MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclm Structured version   Unicode version

Theorem isclm 21730
Description: A complex module is a left module over a subring of the complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
isclm.f  |-  F  =  (Scalar `  W )
isclm.k  |-  K  =  ( Base `  F
)
Assertion
Ref Expression
isclm  |-  ( W  e. CMod 
<->  ( W  e.  LMod  /\  F  =  (flds  K )  /\  K  e.  (SubRing ` fld ) ) )

Proof of Theorem isclm
Dummy variables  f 
k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 5858 . . . . 5  |-  (Scalar `  w )  e.  _V
21a1i 11 . . . 4  |-  ( w  =  W  ->  (Scalar `  w )  e.  _V )
3 fvex 5858 . . . . . 6  |-  ( Base `  f )  e.  _V
43a1i 11 . . . . 5  |-  ( ( w  =  W  /\  f  =  (Scalar `  w
) )  ->  ( Base `  f )  e. 
_V )
5 id 22 . . . . . . . . 9  |-  ( f  =  (Scalar `  w
)  ->  f  =  (Scalar `  w ) )
6 fveq2 5848 . . . . . . . . . 10  |-  ( w  =  W  ->  (Scalar `  w )  =  (Scalar `  W ) )
7 isclm.f . . . . . . . . . 10  |-  F  =  (Scalar `  W )
86, 7syl6eqr 2513 . . . . . . . . 9  |-  ( w  =  W  ->  (Scalar `  w )  =  F )
95, 8sylan9eqr 2517 . . . . . . . 8  |-  ( ( w  =  W  /\  f  =  (Scalar `  w
) )  ->  f  =  F )
109adantr 463 . . . . . . 7  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
f  =  F )
11 id 22 . . . . . . . . 9  |-  ( k  =  ( Base `  f
)  ->  k  =  ( Base `  f )
)
129fveq2d 5852 . . . . . . . . . 10  |-  ( ( w  =  W  /\  f  =  (Scalar `  w
) )  ->  ( Base `  f )  =  ( Base `  F
) )
13 isclm.k . . . . . . . . . 10  |-  K  =  ( Base `  F
)
1412, 13syl6eqr 2513 . . . . . . . . 9  |-  ( ( w  =  W  /\  f  =  (Scalar `  w
) )  ->  ( Base `  f )  =  K )
1511, 14sylan9eqr 2517 . . . . . . . 8  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
k  =  K )
1615oveq2d 6286 . . . . . . 7  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
(flds  k
)  =  (flds  K ) )
1710, 16eqeq12d 2476 . . . . . 6  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( f  =  (flds  k )  <-> 
F  =  (flds  K ) ) )
1815eleq1d 2523 . . . . . 6  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( k  e.  (SubRing ` fld ) 
<->  K  e.  (SubRing ` fld ) ) )
1917, 18anbi12d 708 . . . . 5  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( ( f  =  (flds  k )  /\  k  e.  (SubRing ` fld ) )  <->  ( F  =  (flds  K )  /\  K  e.  (SubRing ` fld ) ) ) )
204, 19sbcied 3361 . . . 4  |-  ( ( w  =  W  /\  f  =  (Scalar `  w
) )  ->  ( [. ( Base `  f
)  /  k ]. ( f  =  (flds  k )  /\  k  e.  (SubRing ` fld ) )  <->  ( F  =  (flds  K )  /\  K  e.  (SubRing ` fld ) ) ) )
212, 20sbcied 3361 . . 3  |-  ( w  =  W  ->  ( [. (Scalar `  w )  /  f ]. [. ( Base `  f )  / 
k ]. ( f  =  (flds  k )  /\  k  e.  (SubRing ` fld ) )  <->  ( F  =  (flds  K )  /\  K  e.  (SubRing ` fld ) ) ) )
22 df-clm 21729 . . 3  |- CMod  =  {
w  e.  LMod  |  [. (Scalar `  w )  / 
f ]. [. ( Base `  f )  /  k ]. ( f  =  (flds  k )  /\  k  e.  (SubRing ` fld ) ) }
2321, 22elrab2 3256 . 2  |-  ( W  e. CMod 
<->  ( W  e.  LMod  /\  ( F  =  (flds  K )  /\  K  e.  (SubRing ` fld ) ) ) )
24 3anass 975 . 2  |-  ( ( W  e.  LMod  /\  F  =  (flds  K )  /\  K  e.  (SubRing ` fld ) )  <->  ( W  e.  LMod  /\  ( F  =  (flds  K )  /\  K  e.  (SubRing ` fld ) ) ) )
2523, 24bitr4i 252 1  |-  ( W  e. CMod 
<->  ( W  e.  LMod  /\  F  =  (flds  K )  /\  K  e.  (SubRing ` fld ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   _Vcvv 3106   [.wsbc 3324   ` cfv 5570  (class class class)co 6270   Basecbs 14716   ↾s cress 14717  Scalarcsca 14787  SubRingcsubrg 17620   LModclmod 17707  ℂfldccnfld 18615  CModcclm 21728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-nul 4568
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-iota 5534  df-fv 5578  df-ov 6273  df-clm 21729
This theorem is referenced by:  clmsca  21731  clmsubrg  21732  clmlmod  21733  isclmi  21743  lmhmclm  21752  cphclm  21802  tchclm  21841
  Copyright terms: Public domain W3C validator