MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscld2 Structured version   Unicode version

Theorem iscld2 18473
Description: A subset of the underlying set of a topology is closed iff its complement is open. (Contributed by NM, 4-Oct-2006.)
Hypothesis
Ref Expression
iscld.1  |-  X  = 
U. J
Assertion
Ref Expression
iscld2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( S  e.  (
Clsd `  J )  <->  ( X  \  S )  e.  J ) )

Proof of Theorem iscld2
StepHypRef Expression
1 iscld.1 . . 3  |-  X  = 
U. J
21iscld 18472 . 2  |-  ( J  e.  Top  ->  ( S  e.  ( Clsd `  J )  <->  ( S  C_  X  /\  ( X 
\  S )  e.  J ) ) )
32baibd 893 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( S  e.  (
Clsd `  J )  <->  ( X  \  S )  e.  J ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1362    e. wcel 1755    \ cdif 3313    C_ wss 3316   U.cuni 4079   ` cfv 5406   Topctop 18339   Clsdccld 18461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2964  df-sbc 3176  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-op 3872  df-uni 4080  df-br 4281  df-opab 4339  df-mpt 4340  df-id 4623  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-iota 5369  df-fun 5408  df-fv 5414  df-top 18344  df-cld 18464
This theorem is referenced by:  isopn2  18477  0cld  18483  uncld  18486  isclo  18532  cnclima  18713  ist1-2  18792  hausdiag  19059  qtopcld  19127  ufildr  19345  blcld  19921  icccld  20187  iocmnfcld  20189  zcld  20231  recld2  20232  dvtanlem  28282  kelac2  29260  stoweidlem50  29688
  Copyright terms: Public domain W3C validator