HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  isch3 Structured version   Unicode version

Theorem isch3 25973
Description: A Hilbert subspace is closed iff it is complete. A complete subspace is one in which every Cauchy sequence of vectors in the subspace converges to a member of the subspace (Definition of complete subspace in [Beran] p. 96). Remark 3.12 of [Beran] p. 107. (Contributed by NM, 24-Dec-2001.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
isch3  |-  ( H  e.  CH  <->  ( H  e.  SH  /\  A. f  e.  Cauchy  ( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) ) )
Distinct variable group:    x, f, H

Proof of Theorem isch3
StepHypRef Expression
1 isch2 25955 . 2  |-  ( H  e.  CH  <->  ( H  e.  SH  /\  A. f A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )
) )
2 ax-hcompl 25933 . . . . . . . . . 10  |-  ( f  e.  Cauchy  ->  E. x  e.  ~H  f  ~~>v  x )
3 rexex 2924 . . . . . . . . . 10  |-  ( E. x  e.  ~H  f  ~~>v  x  ->  E. x  f  ~~>v  x )
42, 3syl 16 . . . . . . . . 9  |-  ( f  e.  Cauchy  ->  E. x  f  ~~>v  x )
5 19.29 1660 . . . . . . . . 9  |-  ( ( A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  E. x  f  ~~>v  x )  ->  E. x
( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x ) )
64, 5sylan2 474 . . . . . . . 8  |-  ( ( A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  e.  Cauchy )  ->  E. x ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x ) )
7 id 22 . . . . . . . . . . . . . . 15  |-  ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H
)  ->  ( (
f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )
)
87imp 429 . . . . . . . . . . . . . 14  |-  ( ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  (
f : NN --> H  /\  f  ~~>v  x ) )  ->  x  e.  H
)
98an12s 799 . . . . . . . . . . . . 13  |-  ( ( f : NN --> H  /\  ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x ) )  ->  x  e.  H )
10 simprr 756 . . . . . . . . . . . . 13  |-  ( ( f : NN --> H  /\  ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x ) )  ->  f  ~~>v  x )
119, 10jca 532 . . . . . . . . . . . 12  |-  ( ( f : NN --> H  /\  ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x ) )  ->  ( x  e.  H  /\  f  ~~>v  x ) )
1211ex 434 . . . . . . . . . . 11  |-  ( f : NN --> H  -> 
( ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x )  ->  ( x  e.  H  /\  f  ~~>v  x ) ) )
1312eximdv 1686 . . . . . . . . . 10  |-  ( f : NN --> H  -> 
( E. x ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x )  ->  E. x
( x  e.  H  /\  f  ~~>v  x ) ) )
1413com12 31 . . . . . . . . 9  |-  ( E. x ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x )  ->  ( f : NN --> H  ->  E. x
( x  e.  H  /\  f  ~~>v  x ) ) )
15 df-rex 2823 . . . . . . . . 9  |-  ( E. x  e.  H  f 
~~>v  x  <->  E. x ( x  e.  H  /\  f  ~~>v  x ) )
1614, 15syl6ibr 227 . . . . . . . 8  |-  ( E. x ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x )  ->  ( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) )
176, 16syl 16 . . . . . . 7  |-  ( ( A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  e.  Cauchy )  -> 
( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) )
1817ex 434 . . . . . 6  |-  ( A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  ->  ( f  e.  Cauchy  -> 
( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) ) )
19 nfv 1683 . . . . . . . 8  |-  F/ x  f  e.  Cauchy
20 nfv 1683 . . . . . . . . 9  |-  F/ x  f : NN --> H
21 nfre1 2928 . . . . . . . . 9  |-  F/ x E. x  e.  H  f  ~~>v  x
2220, 21nfim 1867 . . . . . . . 8  |-  F/ x
( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x )
2319, 22nfim 1867 . . . . . . 7  |-  F/ x
( f  e.  Cauchy  -> 
( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) )
24 bi2.04 361 . . . . . . . . 9  |-  ( ( f  e.  Cauchy  ->  (
f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) )  <-> 
( f : NN --> H  ->  ( f  e. 
Cauchy  ->  E. x  e.  H  f  ~~>v  x ) ) )
25 hlimcaui 25968 . . . . . . . . . . . 12  |-  ( f 
~~>v  x  ->  f  e.  Cauchy )
2625imim1i 58 . . . . . . . . . . 11  |-  ( ( f  e.  Cauchy  ->  E. x  e.  H  f  ~~>v  x )  ->  ( f  ~~>v  x  ->  E. x  e.  H  f  ~~>v  x ) )
27 rexex 2924 . . . . . . . . . . . . 13  |-  ( E. x  e.  H  f 
~~>v  x  ->  E. x  f  ~~>v  x )
28 hlimeui 25972 . . . . . . . . . . . . 13  |-  ( E. x  f  ~~>v  x  <->  E! x  f  ~~>v  x )
2927, 28sylib 196 . . . . . . . . . . . 12  |-  ( E. x  e.  H  f 
~~>v  x  ->  E! x  f  ~~>v  x )
30 exancom 1648 . . . . . . . . . . . . 13  |-  ( E. x ( x  e.  H  /\  f  ~~>v  x )  <->  E. x ( f 
~~>v  x  /\  x  e.  H ) )
3115, 30sylbb 197 . . . . . . . . . . . 12  |-  ( E. x  e.  H  f 
~~>v  x  ->  E. x
( f  ~~>v  x  /\  x  e.  H )
)
32 eupick 2364 . . . . . . . . . . . 12  |-  ( ( E! x  f  ~~>v  x  /\  E. x ( f  ~~>v  x  /\  x  e.  H ) )  -> 
( f  ~~>v  x  ->  x  e.  H )
)
3329, 31, 32syl2anc 661 . . . . . . . . . . 11  |-  ( E. x  e.  H  f 
~~>v  x  ->  ( f  ~~>v  x  ->  x  e.  H ) )
3426, 33syli 37 . . . . . . . . . 10  |-  ( ( f  e.  Cauchy  ->  E. x  e.  H  f  ~~>v  x )  ->  ( f  ~~>v  x  ->  x  e.  H ) )
3534imim2i 14 . . . . . . . . 9  |-  ( ( f : NN --> H  -> 
( f  e.  Cauchy  ->  E. x  e.  H  f  ~~>v  x ) )  ->  ( f : NN --> H  ->  (
f  ~~>v  x  ->  x  e.  H ) ) )
3624, 35sylbi 195 . . . . . . . 8  |-  ( ( f  e.  Cauchy  ->  (
f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) )  ->  ( f : NN --> H  ->  (
f  ~~>v  x  ->  x  e.  H ) ) )
3736impd 431 . . . . . . 7  |-  ( ( f  e.  Cauchy  ->  (
f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) )  ->  ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )
)
3823, 37alrimi 1825 . . . . . 6  |-  ( ( f  e.  Cauchy  ->  (
f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) )  ->  A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )
)
3918, 38impbii 188 . . . . 5  |-  ( A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  <->  ( f  e.  Cauchy  ->  (
f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) ) )
4039albii 1620 . . . 4  |-  ( A. f A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  <->  A. f ( f  e. 
Cauchy  ->  ( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) ) )
41 df-ral 2822 . . . 4  |-  ( A. f  e.  Cauchy  ( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x )  <->  A. f
( f  e.  Cauchy  -> 
( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) ) )
4240, 41bitr4i 252 . . 3  |-  ( A. f A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  <->  A. f  e.  Cauchy  ( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) )
4342anbi2i 694 . 2  |-  ( ( H  e.  SH  /\  A. f A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H
) )  <->  ( H  e.  SH  /\  A. f  e.  Cauchy  ( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) ) )
441, 43bitri 249 1  |-  ( H  e.  CH  <->  ( H  e.  SH  /\  A. f  e.  Cauchy  ( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1377   E.wex 1596    e. wcel 1767   E!weu 2275   A.wral 2817   E.wrex 2818   class class class wbr 4453   -->wf 5590   NNcn 10548   ~Hchil 25650   Cauchyccau 25657    ~~>v chli 25658   SHcsh 25659   CHcch 25660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582  ax-addf 9583  ax-mulf 9584  ax-hilex 25730  ax-hfvadd 25731  ax-hvcom 25732  ax-hvass 25733  ax-hv0cl 25734  ax-hvaddid 25735  ax-hfvmul 25736  ax-hvmulid 25737  ax-hvmulass 25738  ax-hvdistr1 25739  ax-hvdistr2 25740  ax-hvmul0 25741  ax-hfi 25810  ax-his1 25813  ax-his2 25814  ax-his3 25815  ax-his4 25816  ax-hcompl 25933
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-map 7434  df-pm 7435  df-en 7529  df-dom 7530  df-sdom 7531  df-sup 7913  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-n0 10808  df-z 10877  df-uz 11095  df-q 11195  df-rp 11233  df-xneg 11330  df-xadd 11331  df-xmul 11332  df-icc 11548  df-seq 12088  df-exp 12147  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-topgen 14716  df-psmet 18281  df-xmet 18282  df-met 18283  df-bl 18284  df-mopn 18285  df-top 19268  df-bases 19270  df-topon 19271  df-lm 19598  df-haus 19684  df-cau 21563  df-grpo 25007  df-gid 25008  df-ginv 25009  df-gdiv 25010  df-ablo 25098  df-vc 25253  df-nv 25299  df-va 25302  df-ba 25303  df-sm 25304  df-0v 25305  df-vs 25306  df-nmcv 25307  df-ims 25308  df-hnorm 25699  df-hvsub 25702  df-hlim 25703  df-hcau 25704  df-ch 25953
This theorem is referenced by:  chcompl  25974  occl  26036
  Copyright terms: Public domain W3C validator