HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  isch3 Structured version   Unicode version

Theorem isch3 26892
Description: A Hilbert subspace is closed iff it is complete. A complete subspace is one in which every Cauchy sequence of vectors in the subspace converges to a member of the subspace (Definition of complete subspace in [Beran] p. 96). Remark 3.12 of [Beran] p. 107. (Contributed by NM, 24-Dec-2001.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
isch3  |-  ( H  e.  CH  <->  ( H  e.  SH  /\  A. f  e.  Cauchy  ( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) ) )
Distinct variable group:    x, f, H

Proof of Theorem isch3
StepHypRef Expression
1 isch2 26874 . 2  |-  ( H  e.  CH  <->  ( H  e.  SH  /\  A. f A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )
) )
2 ax-hcompl 26853 . . . . . . . . . 10  |-  ( f  e.  Cauchy  ->  E. x  e.  ~H  f  ~~>v  x )
3 rexex 2879 . . . . . . . . . 10  |-  ( E. x  e.  ~H  f  ~~>v  x  ->  E. x  f  ~~>v  x )
42, 3syl 17 . . . . . . . . 9  |-  ( f  e.  Cauchy  ->  E. x  f  ~~>v  x )
5 19.29 1729 . . . . . . . . 9  |-  ( ( A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  E. x  f  ~~>v  x )  ->  E. x
( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x ) )
64, 5sylan2 476 . . . . . . . 8  |-  ( ( A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  e.  Cauchy )  ->  E. x ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x ) )
7 id 22 . . . . . . . . . . . . . . 15  |-  ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H
)  ->  ( (
f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )
)
87imp 430 . . . . . . . . . . . . . 14  |-  ( ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  (
f : NN --> H  /\  f  ~~>v  x ) )  ->  x  e.  H
)
98an12s 808 . . . . . . . . . . . . 13  |-  ( ( f : NN --> H  /\  ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x ) )  ->  x  e.  H )
10 simprr 764 . . . . . . . . . . . . 13  |-  ( ( f : NN --> H  /\  ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x ) )  ->  f  ~~>v  x )
119, 10jca 534 . . . . . . . . . . . 12  |-  ( ( f : NN --> H  /\  ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x ) )  ->  ( x  e.  H  /\  f  ~~>v  x ) )
1211ex 435 . . . . . . . . . . 11  |-  ( f : NN --> H  -> 
( ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x )  ->  ( x  e.  H  /\  f  ~~>v  x ) ) )
1312eximdv 1758 . . . . . . . . . 10  |-  ( f : NN --> H  -> 
( E. x ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x )  ->  E. x
( x  e.  H  /\  f  ~~>v  x ) ) )
1413com12 32 . . . . . . . . 9  |-  ( E. x ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x )  ->  ( f : NN --> H  ->  E. x
( x  e.  H  /\  f  ~~>v  x ) ) )
15 df-rex 2777 . . . . . . . . 9  |-  ( E. x  e.  H  f 
~~>v  x  <->  E. x ( x  e.  H  /\  f  ~~>v  x ) )
1614, 15syl6ibr 230 . . . . . . . 8  |-  ( E. x ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x )  ->  ( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) )
176, 16syl 17 . . . . . . 7  |-  ( ( A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  e.  Cauchy )  -> 
( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) )
1817ex 435 . . . . . 6  |-  ( A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  ->  ( f  e.  Cauchy  -> 
( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) ) )
19 nfv 1755 . . . . . . . 8  |-  F/ x  f  e.  Cauchy
20 nfv 1755 . . . . . . . . 9  |-  F/ x  f : NN --> H
21 nfre1 2883 . . . . . . . . 9  |-  F/ x E. x  e.  H  f  ~~>v  x
2220, 21nfim 1980 . . . . . . . 8  |-  F/ x
( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x )
2319, 22nfim 1980 . . . . . . 7  |-  F/ x
( f  e.  Cauchy  -> 
( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) )
24 bi2.04 362 . . . . . . . . 9  |-  ( ( f  e.  Cauchy  ->  (
f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) )  <-> 
( f : NN --> H  ->  ( f  e. 
Cauchy  ->  E. x  e.  H  f  ~~>v  x ) ) )
25 hlimcaui 26887 . . . . . . . . . . . 12  |-  ( f 
~~>v  x  ->  f  e.  Cauchy )
2625imim1i 60 . . . . . . . . . . 11  |-  ( ( f  e.  Cauchy  ->  E. x  e.  H  f  ~~>v  x )  ->  ( f  ~~>v  x  ->  E. x  e.  H  f  ~~>v  x ) )
27 rexex 2879 . . . . . . . . . . . . 13  |-  ( E. x  e.  H  f 
~~>v  x  ->  E. x  f  ~~>v  x )
28 hlimeui 26891 . . . . . . . . . . . . 13  |-  ( E. x  f  ~~>v  x  <->  E! x  f  ~~>v  x )
2927, 28sylib 199 . . . . . . . . . . . 12  |-  ( E. x  e.  H  f 
~~>v  x  ->  E! x  f  ~~>v  x )
30 exancom 1716 . . . . . . . . . . . . 13  |-  ( E. x ( x  e.  H  /\  f  ~~>v  x )  <->  E. x ( f 
~~>v  x  /\  x  e.  H ) )
3115, 30sylbb 200 . . . . . . . . . . . 12  |-  ( E. x  e.  H  f 
~~>v  x  ->  E. x
( f  ~~>v  x  /\  x  e.  H )
)
32 eupick 2335 . . . . . . . . . . . 12  |-  ( ( E! x  f  ~~>v  x  /\  E. x ( f  ~~>v  x  /\  x  e.  H ) )  -> 
( f  ~~>v  x  ->  x  e.  H )
)
3329, 31, 32syl2anc 665 . . . . . . . . . . 11  |-  ( E. x  e.  H  f 
~~>v  x  ->  ( f  ~~>v  x  ->  x  e.  H ) )
3426, 33syli 38 . . . . . . . . . 10  |-  ( ( f  e.  Cauchy  ->  E. x  e.  H  f  ~~>v  x )  ->  ( f  ~~>v  x  ->  x  e.  H ) )
3534imim2i 16 . . . . . . . . 9  |-  ( ( f : NN --> H  -> 
( f  e.  Cauchy  ->  E. x  e.  H  f  ~~>v  x ) )  ->  ( f : NN --> H  ->  (
f  ~~>v  x  ->  x  e.  H ) ) )
3624, 35sylbi 198 . . . . . . . 8  |-  ( ( f  e.  Cauchy  ->  (
f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) )  ->  ( f : NN --> H  ->  (
f  ~~>v  x  ->  x  e.  H ) ) )
3736impd 432 . . . . . . 7  |-  ( ( f  e.  Cauchy  ->  (
f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) )  ->  ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )
)
3823, 37alrimi 1932 . . . . . 6  |-  ( ( f  e.  Cauchy  ->  (
f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) )  ->  A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )
)
3918, 38impbii 190 . . . . 5  |-  ( A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  <->  ( f  e.  Cauchy  ->  (
f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) ) )
4039albii 1685 . . . 4  |-  ( A. f A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  <->  A. f ( f  e. 
Cauchy  ->  ( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) ) )
41 df-ral 2776 . . . 4  |-  ( A. f  e.  Cauchy  ( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x )  <->  A. f
( f  e.  Cauchy  -> 
( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) ) )
4240, 41bitr4i 255 . . 3  |-  ( A. f A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  <->  A. f  e.  Cauchy  ( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) )
4342anbi2i 698 . 2  |-  ( ( H  e.  SH  /\  A. f A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H
) )  <->  ( H  e.  SH  /\  A. f  e.  Cauchy  ( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) ) )
441, 43bitri 252 1  |-  ( H  e.  CH  <->  ( H  e.  SH  /\  A. f  e.  Cauchy  ( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370   A.wal 1435   E.wex 1657    e. wcel 1872   E!weu 2269   A.wral 2771   E.wrex 2772   class class class wbr 4423   -->wf 5597   NNcn 10616   ~Hchil 26570   Cauchyccau 26577    ~~>v chli 26578   SHcsh 26579   CHcch 26580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-cnex 9602  ax-resscn 9603  ax-1cn 9604  ax-icn 9605  ax-addcl 9606  ax-addrcl 9607  ax-mulcl 9608  ax-mulrcl 9609  ax-mulcom 9610  ax-addass 9611  ax-mulass 9612  ax-distr 9613  ax-i2m1 9614  ax-1ne0 9615  ax-1rid 9616  ax-rnegex 9617  ax-rrecex 9618  ax-cnre 9619  ax-pre-lttri 9620  ax-pre-lttrn 9621  ax-pre-ltadd 9622  ax-pre-mulgt0 9623  ax-pre-sup 9624  ax-addf 9625  ax-mulf 9626  ax-hilex 26650  ax-hfvadd 26651  ax-hvcom 26652  ax-hvass 26653  ax-hv0cl 26654  ax-hvaddid 26655  ax-hfvmul 26656  ax-hvmulid 26657  ax-hvmulass 26658  ax-hvdistr1 26659  ax-hvdistr2 26660  ax-hvmul0 26661  ax-hfi 26730  ax-his1 26733  ax-his2 26734  ax-his3 26735  ax-his4 26736  ax-hcompl 26853
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7039  df-recs 7101  df-rdg 7139  df-er 7374  df-map 7485  df-pm 7486  df-en 7581  df-dom 7582  df-sdom 7583  df-sup 7965  df-inf 7966  df-pnf 9684  df-mnf 9685  df-xr 9686  df-ltxr 9687  df-le 9688  df-sub 9869  df-neg 9870  df-div 10277  df-nn 10617  df-2 10675  df-3 10676  df-4 10677  df-n0 10877  df-z 10945  df-uz 11167  df-q 11272  df-rp 11310  df-xneg 11416  df-xadd 11417  df-xmul 11418  df-icc 11649  df-seq 12220  df-exp 12279  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-topgen 15341  df-psmet 18961  df-xmet 18962  df-met 18963  df-bl 18964  df-mopn 18965  df-top 19919  df-bases 19920  df-topon 19921  df-lm 20243  df-haus 20329  df-cau 22224  df-grpo 25917  df-gid 25918  df-ginv 25919  df-gdiv 25920  df-ablo 26008  df-vc 26163  df-nv 26209  df-va 26212  df-ba 26213  df-sm 26214  df-0v 26215  df-vs 26216  df-nmcv 26217  df-ims 26218  df-hnorm 26619  df-hvsub 26622  df-hlim 26623  df-hcau 26624  df-ch 26872
This theorem is referenced by:  chcompl  26893  occl  26955
  Copyright terms: Public domain W3C validator