MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscfil2 Structured version   Unicode version

Theorem iscfil2 22223
Description: The property of being a Cauchy filter. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
iscfil2  |-  ( D  e.  ( *Met `  X )  ->  ( F  e.  (CauFil `  D
)  <->  ( F  e.  ( Fil `  X
)  /\  A. x  e.  RR+  E. y  e.  F  A. z  e.  y  A. w  e.  y  ( z D w )  <  x
) ) )
Distinct variable groups:    x, w, y, z, F    w, X, x, y, z    w, D, x, y, z

Proof of Theorem iscfil2
StepHypRef Expression
1 iscfil 22222 . 2  |-  ( D  e.  ( *Met `  X )  ->  ( F  e.  (CauFil `  D
)  <->  ( F  e.  ( Fil `  X
)  /\  A. x  e.  RR+  E. y  e.  F  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) ) )
2 xmetf 21331 . . . . . . . . 9  |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )
32ad3antrrr 734 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  D : ( X  X.  X ) --> RR* )
4 ffun 5745 . . . . . . . 8  |-  ( D : ( X  X.  X ) --> RR*  ->  Fun 
D )
53, 4syl 17 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  Fun  D )
6 simplr 760 . . . . . . . . . 10  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F  e.  ( Fil `  X ) )  /\  x  e.  RR+ )  ->  F  e.  ( Fil `  X
) )
7 filelss 20854 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  X )  /\  y  e.  F )  ->  y  C_  X )
86, 7sylan 473 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  y  C_  X )
9 xpss12 4956 . . . . . . . . 9  |-  ( ( y  C_  X  /\  y  C_  X )  -> 
( y  X.  y
)  C_  ( X  X.  X ) )
108, 8, 9syl2anc 665 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  (
y  X.  y ) 
C_  ( X  X.  X ) )
11 fdm 5747 . . . . . . . . 9  |-  ( D : ( X  X.  X ) --> RR*  ->  dom 
D  =  ( X  X.  X ) )
123, 11syl 17 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  dom  D  =  ( X  X.  X ) )
1310, 12sseqtr4d 3501 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  (
y  X.  y ) 
C_  dom  D )
14 funimassov 6457 . . . . . . 7  |-  ( ( Fun  D  /\  (
y  X.  y ) 
C_  dom  D )  ->  ( ( D "
( y  X.  y
) )  C_  (
0 [,) x )  <->  A. z  e.  y  A. w  e.  y 
( z D w )  e.  ( 0 [,) x ) ) )
155, 13, 14syl2anc 665 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  (
( D " (
y  X.  y ) )  C_  ( 0 [,) x )  <->  A. z  e.  y  A. w  e.  y  ( z D w )  e.  ( 0 [,) x
) ) )
16 0xr 9688 . . . . . . . . 9  |-  0  e.  RR*
1716a1i 11 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  0  e.  RR* )
18 simpllr 767 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  x  e.  RR+ )
1918rpxrd 11343 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  x  e.  RR* )
20 simp-4l 774 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  D  e.  ( *Met `  X
) )
218sselda 3464 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  z  e.  y )  ->  z  e.  X )
2221adantrr 721 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  z  e.  X )
238sselda 3464 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  w  e.  y )  ->  w  e.  X )
2423adantrl 720 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  w  e.  X )
25 xmetcl 21333 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  z  e.  X  /\  w  e.  X
)  ->  ( z D w )  e. 
RR* )
2620, 22, 24, 25syl3anc 1264 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  ( z D w )  e. 
RR* )
27 xmetge0 21346 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  z  e.  X  /\  w  e.  X
)  ->  0  <_  ( z D w ) )
2820, 22, 24, 27syl3anc 1264 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  0  <_  ( z D w ) )
29 elico1 11680 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  x  e.  RR* )  ->  (
( z D w )  e.  ( 0 [,) x )  <->  ( (
z D w )  e.  RR*  /\  0  <_  ( z D w )  /\  ( z D w )  < 
x ) ) )
30 df-3an 984 . . . . . . . . . 10  |-  ( ( ( z D w )  e.  RR*  /\  0  <_  ( z D w )  /\  ( z D w )  < 
x )  <->  ( (
( z D w )  e.  RR*  /\  0  <_  ( z D w ) )  /\  (
z D w )  <  x ) )
3129, 30syl6bb 264 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  x  e.  RR* )  ->  (
( z D w )  e.  ( 0 [,) x )  <->  ( (
( z D w )  e.  RR*  /\  0  <_  ( z D w ) )  /\  (
z D w )  <  x ) ) )
3231baibd 917 . . . . . . . 8  |-  ( ( ( 0  e.  RR*  /\  x  e.  RR* )  /\  ( ( z D w )  e.  RR*  /\  0  <_  ( z D w ) ) )  ->  ( (
z D w )  e.  ( 0 [,) x )  <->  ( z D w )  < 
x ) )
3317, 19, 26, 28, 32syl22anc 1265 . . . . . . 7  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  ( (
z D w )  e.  ( 0 [,) x )  <->  ( z D w )  < 
x ) )
34332ralbidva 2867 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  ( A. z  e.  y  A. w  e.  y 
( z D w )  e.  ( 0 [,) x )  <->  A. z  e.  y  A. w  e.  y  ( z D w )  < 
x ) )
3515, 34bitrd 256 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  (
( D " (
y  X.  y ) )  C_  ( 0 [,) x )  <->  A. z  e.  y  A. w  e.  y  ( z D w )  < 
x ) )
3635rexbidva 2936 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F  e.  ( Fil `  X ) )  /\  x  e.  RR+ )  ->  ( E. y  e.  F  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) x )  <->  E. y  e.  F  A. z  e.  y  A. w  e.  y  ( z D w )  < 
x ) )
3736ralbidva 2861 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X ) )  ->  ( A. x  e.  RR+  E. y  e.  F  ( D " ( y  X.  y
) )  C_  (
0 [,) x )  <->  A. x  e.  RR+  E. y  e.  F  A. z  e.  y  A. w  e.  y  ( z D w )  < 
x ) )
3837pm5.32da 645 . 2  |-  ( D  e.  ( *Met `  X )  ->  (
( F  e.  ( Fil `  X )  /\  A. x  e.  RR+  E. y  e.  F  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) x ) )  <->  ( F  e.  ( Fil `  X
)  /\  A. x  e.  RR+  E. y  e.  F  A. z  e.  y  A. w  e.  y  ( z D w )  <  x
) ) )
391, 38bitrd 256 1  |-  ( D  e.  ( *Met `  X )  ->  ( F  e.  (CauFil `  D
)  <->  ( F  e.  ( Fil `  X
)  /\  A. x  e.  RR+  E. y  e.  F  A. z  e.  y  A. w  e.  y  ( z D w )  <  x
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868   A.wral 2775   E.wrex 2776    C_ wss 3436   class class class wbr 4420    X. cxp 4848   dom cdm 4850   "cima 4853   Fun wfun 5592   -->wf 5594   ` cfv 5598  (class class class)co 6302   0cc0 9540   RR*cxr 9675    < clt 9676    <_ cle 9677   RR+crp 11303   [,)cico 11638   *Metcxmt 18943   Filcfil 20847  CauFilccfil 22209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594  ax-cnex 9596  ax-resscn 9597  ax-1cn 9598  ax-icn 9599  ax-addcl 9600  ax-addrcl 9601  ax-mulcl 9602  ax-mulrcl 9603  ax-mulcom 9604  ax-addass 9605  ax-mulass 9606  ax-distr 9607  ax-i2m1 9608  ax-1ne0 9609  ax-1rid 9610  ax-rnegex 9611  ax-rrecex 9612  ax-cnre 9613  ax-pre-lttri 9614  ax-pre-lttrn 9615  ax-pre-ltadd 9616  ax-pre-mulgt0 9617
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-id 4765  df-po 4771  df-so 4772  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ima 4863  df-iota 5562  df-fun 5600  df-fn 5601  df-f 5602  df-f1 5603  df-fo 5604  df-f1o 5605  df-fv 5606  df-riota 6264  df-ov 6305  df-oprab 6306  df-mpt2 6307  df-1st 6804  df-2nd 6805  df-er 7368  df-map 7479  df-en 7575  df-dom 7576  df-sdom 7577  df-pnf 9678  df-mnf 9679  df-xr 9680  df-ltxr 9681  df-le 9682  df-sub 9863  df-neg 9864  df-div 10271  df-2 10669  df-rp 11304  df-xneg 11410  df-xadd 11411  df-xmul 11412  df-ico 11642  df-xmet 18951  df-fbas 18955  df-fil 20848  df-cfil 22212
This theorem is referenced by:  cfili  22225  fgcfil  22228  iscfil3  22230  cfilresi  22252  cfilres  22253
  Copyright terms: Public domain W3C validator