MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscfil2 Structured version   Unicode version

Theorem iscfil2 20776
Description: The property of being a Cauchy filter. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
iscfil2  |-  ( D  e.  ( *Met `  X )  ->  ( F  e.  (CauFil `  D
)  <->  ( F  e.  ( Fil `  X
)  /\  A. x  e.  RR+  E. y  e.  F  A. z  e.  y  A. w  e.  y  ( z D w )  <  x
) ) )
Distinct variable groups:    x, w, y, z, F    w, X, x, y, z    w, D, x, y, z

Proof of Theorem iscfil2
StepHypRef Expression
1 iscfil 20775 . 2  |-  ( D  e.  ( *Met `  X )  ->  ( F  e.  (CauFil `  D
)  <->  ( F  e.  ( Fil `  X
)  /\  A. x  e.  RR+  E. y  e.  F  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) ) )
2 xmetf 19903 . . . . . . . . 9  |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )
32ad3antrrr 729 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  D : ( X  X.  X ) --> RR* )
4 ffun 5560 . . . . . . . 8  |-  ( D : ( X  X.  X ) --> RR*  ->  Fun 
D )
53, 4syl 16 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  Fun  D )
6 simplr 754 . . . . . . . . . 10  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F  e.  ( Fil `  X ) )  /\  x  e.  RR+ )  ->  F  e.  ( Fil `  X
) )
7 filelss 19424 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  X )  /\  y  e.  F )  ->  y  C_  X )
86, 7sylan 471 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  y  C_  X )
9 xpss12 4944 . . . . . . . . 9  |-  ( ( y  C_  X  /\  y  C_  X )  -> 
( y  X.  y
)  C_  ( X  X.  X ) )
108, 8, 9syl2anc 661 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  (
y  X.  y ) 
C_  ( X  X.  X ) )
11 fdm 5562 . . . . . . . . 9  |-  ( D : ( X  X.  X ) --> RR*  ->  dom 
D  =  ( X  X.  X ) )
123, 11syl 16 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  dom  D  =  ( X  X.  X ) )
1310, 12sseqtr4d 3392 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  (
y  X.  y ) 
C_  dom  D )
14 funimassov 6239 . . . . . . 7  |-  ( ( Fun  D  /\  (
y  X.  y ) 
C_  dom  D )  ->  ( ( D "
( y  X.  y
) )  C_  (
0 [,) x )  <->  A. z  e.  y  A. w  e.  y 
( z D w )  e.  ( 0 [,) x ) ) )
155, 13, 14syl2anc 661 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  (
( D " (
y  X.  y ) )  C_  ( 0 [,) x )  <->  A. z  e.  y  A. w  e.  y  ( z D w )  e.  ( 0 [,) x
) ) )
16 0xr 9429 . . . . . . . . 9  |-  0  e.  RR*
1716a1i 11 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  0  e.  RR* )
18 simpllr 758 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  x  e.  RR+ )
1918rpxrd 11027 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  x  e.  RR* )
20 simp-4l 765 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  D  e.  ( *Met `  X
) )
218sselda 3355 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  z  e.  y )  ->  z  e.  X )
2221adantrr 716 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  z  e.  X )
238sselda 3355 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  w  e.  y )  ->  w  e.  X )
2423adantrl 715 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  w  e.  X )
25 xmetcl 19905 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  z  e.  X  /\  w  e.  X
)  ->  ( z D w )  e. 
RR* )
2620, 22, 24, 25syl3anc 1218 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  ( z D w )  e. 
RR* )
27 xmetge0 19918 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  z  e.  X  /\  w  e.  X
)  ->  0  <_  ( z D w ) )
2820, 22, 24, 27syl3anc 1218 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  0  <_  ( z D w ) )
29 elico1 11342 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  x  e.  RR* )  ->  (
( z D w )  e.  ( 0 [,) x )  <->  ( (
z D w )  e.  RR*  /\  0  <_  ( z D w )  /\  ( z D w )  < 
x ) ) )
30 df-3an 967 . . . . . . . . . 10  |-  ( ( ( z D w )  e.  RR*  /\  0  <_  ( z D w )  /\  ( z D w )  < 
x )  <->  ( (
( z D w )  e.  RR*  /\  0  <_  ( z D w ) )  /\  (
z D w )  <  x ) )
3129, 30syl6bb 261 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  x  e.  RR* )  ->  (
( z D w )  e.  ( 0 [,) x )  <->  ( (
( z D w )  e.  RR*  /\  0  <_  ( z D w ) )  /\  (
z D w )  <  x ) ) )
3231baibd 900 . . . . . . . 8  |-  ( ( ( 0  e.  RR*  /\  x  e.  RR* )  /\  ( ( z D w )  e.  RR*  /\  0  <_  ( z D w ) ) )  ->  ( (
z D w )  e.  ( 0 [,) x )  <->  ( z D w )  < 
x ) )
3317, 19, 26, 28, 32syl22anc 1219 . . . . . . 7  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  ( (
z D w )  e.  ( 0 [,) x )  <->  ( z D w )  < 
x ) )
34332ralbidva 2754 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  ( A. z  e.  y  A. w  e.  y 
( z D w )  e.  ( 0 [,) x )  <->  A. z  e.  y  A. w  e.  y  ( z D w )  < 
x ) )
3515, 34bitrd 253 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  (
( D " (
y  X.  y ) )  C_  ( 0 [,) x )  <->  A. z  e.  y  A. w  e.  y  ( z D w )  < 
x ) )
3635rexbidva 2731 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F  e.  ( Fil `  X ) )  /\  x  e.  RR+ )  ->  ( E. y  e.  F  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) x )  <->  E. y  e.  F  A. z  e.  y  A. w  e.  y  ( z D w )  < 
x ) )
3736ralbidva 2730 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X ) )  ->  ( A. x  e.  RR+  E. y  e.  F  ( D " ( y  X.  y
) )  C_  (
0 [,) x )  <->  A. x  e.  RR+  E. y  e.  F  A. z  e.  y  A. w  e.  y  ( z D w )  < 
x ) )
3837pm5.32da 641 . 2  |-  ( D  e.  ( *Met `  X )  ->  (
( F  e.  ( Fil `  X )  /\  A. x  e.  RR+  E. y  e.  F  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) x ) )  <->  ( F  e.  ( Fil `  X
)  /\  A. x  e.  RR+  E. y  e.  F  A. z  e.  y  A. w  e.  y  ( z D w )  <  x
) ) )
391, 38bitrd 253 1  |-  ( D  e.  ( *Met `  X )  ->  ( F  e.  (CauFil `  D
)  <->  ( F  e.  ( Fil `  X
)  /\  A. x  e.  RR+  E. y  e.  F  A. z  e.  y  A. w  e.  y  ( z D w )  <  x
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2714   E.wrex 2715    C_ wss 3327   class class class wbr 4291    X. cxp 4837   dom cdm 4839   "cima 4842   Fun wfun 5411   -->wf 5413   ` cfv 5417  (class class class)co 6090   0cc0 9281   RR*cxr 9416    < clt 9417    <_ cle 9418   RR+crp 10990   [,)cico 11301   *Metcxmt 17800   Filcfil 19417  CauFilccfil 20762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-id 4635  df-po 4640  df-so 4641  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-1st 6576  df-2nd 6577  df-er 7100  df-map 7215  df-en 7310  df-dom 7311  df-sdom 7312  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-div 9993  df-2 10379  df-rp 10991  df-xneg 11088  df-xadd 11089  df-xmul 11090  df-ico 11305  df-xmet 17809  df-fbas 17813  df-fil 19418  df-cfil 20765
This theorem is referenced by:  cfili  20778  fgcfil  20781  iscfil3  20783  cfilresi  20805  cfilres  20806
  Copyright terms: Public domain W3C validator