MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscau4 Structured version   Unicode version

Theorem iscau4 22191
Description: Express the property " F is a Cauchy sequence of metric  D," using an arbitrary upper set of integers. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypotheses
Ref Expression
iscau3.2  |-  Z  =  ( ZZ>= `  M )
iscau3.3  |-  ( ph  ->  D  e.  ( *Met `  X ) )
iscau3.4  |-  ( ph  ->  M  e.  ZZ )
iscau4.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
iscau4.6  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  j )  =  B )
Assertion
Ref Expression
iscau4  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  <  x ) ) ) )
Distinct variable groups:    j, k, x, D    j, F, k, x    ph, j, k, x   
j, X, k, x   
j, M    j, Z, k, x
Allowed substitution hints:    A( x, j, k)    B( x, j, k)    M( x, k)

Proof of Theorem iscau4
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 iscau3.2 . . . . 5  |-  Z  =  ( ZZ>= `  M )
2 iscau3.3 . . . . 5  |-  ( ph  ->  D  e.  ( *Met `  X ) )
3 iscau3.4 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
41, 2, 3iscau3 22190 . . . 4  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x ) ) ) )
5 simpr 462 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  Z )
65, 1syl6eleq 2516 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  ( ZZ>= `  M )
)
7 eluzelz 11119 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
8 uzid 11124 . . . . . . . . . . . . . 14  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
96, 7, 83syl 18 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  ( ZZ>= `  j )
)
10 fveq2 5825 . . . . . . . . . . . . . . 15  |-  ( k  =  j  ->  ( ZZ>=
`  k )  =  ( ZZ>= `  j )
)
11 fveq2 5825 . . . . . . . . . . . . . . . . 17  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
1211oveq1d 6264 . . . . . . . . . . . . . . . 16  |-  ( k  =  j  ->  (
( F `  k
) D ( F `
 m ) )  =  ( ( F `
 j ) D ( F `  m
) ) )
1312breq1d 4376 . . . . . . . . . . . . . . 15  |-  ( k  =  j  ->  (
( ( F `  k ) D ( F `  m ) )  <  x  <->  ( ( F `  j ) D ( F `  m ) )  < 
x ) )
1410, 13raleqbidv 2978 . . . . . . . . . . . . . 14  |-  ( k  =  j  ->  ( A. m  e.  ( ZZ>=
`  k ) ( ( F `  k
) D ( F `
 m ) )  <  x  <->  A. m  e.  ( ZZ>= `  j )
( ( F `  j ) D ( F `  m ) )  <  x ) )
1514rspcv 3121 . . . . . . . . . . . . 13  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>= `  k )
( ( F `  k ) D ( F `  m ) )  <  x  ->  A. m  e.  ( ZZ>=
`  j ) ( ( F `  j
) D ( F `
 m ) )  <  x ) )
169, 15syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x  ->  A. m  e.  ( ZZ>= `  j )
( ( F `  j ) D ( F `  m ) )  <  x ) )
1716adantr 466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X ) )  ->  ( A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  k ) ( ( F `  k
) D ( F `
 m ) )  <  x  ->  A. m  e.  ( ZZ>= `  j )
( ( F `  j ) D ( F `  m ) )  <  x ) )
18 fveq2 5825 . . . . . . . . . . . . . . 15  |-  ( m  =  k  ->  ( F `  m )  =  ( F `  k ) )
1918oveq2d 6265 . . . . . . . . . . . . . 14  |-  ( m  =  k  ->  (
( F `  j
) D ( F `
 m ) )  =  ( ( F `
 j ) D ( F `  k
) ) )
2019breq1d 4376 . . . . . . . . . . . . 13  |-  ( m  =  k  ->  (
( ( F `  j ) D ( F `  m ) )  <  x  <->  ( ( F `  j ) D ( F `  k ) )  < 
x ) )
2120cbvralv 2996 . . . . . . . . . . . 12  |-  ( A. m  e.  ( ZZ>= `  j ) ( ( F `  j ) D ( F `  m ) )  < 
x  <->  A. k  e.  (
ZZ>= `  j ) ( ( F `  j
) D ( F `
 k ) )  <  x )
22 simpr 462 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X )  ->  ( F `  k )  e.  X
)
2322ralimi 2758 . . . . . . . . . . . . . . 15  |-  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X )  ->  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  X )
2411eleq1d 2490 . . . . . . . . . . . . . . . 16  |-  ( k  =  j  ->  (
( F `  k
)  e.  X  <->  ( F `  j )  e.  X
) )
2524rspcv 3121 . . . . . . . . . . . . . . 15  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  X  ->  ( F `  j )  e.  X
) )
269, 23, 25syl2im 39 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X )  ->  ( F `  j )  e.  X
) )
2726imp 430 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X ) )  ->  ( F `  j )  e.  X
)
28 r19.26 2894 . . . . . . . . . . . . . . . 16  |-  ( A. k  e.  ( ZZ>= `  j ) ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X )  /\  ( ( F `
 j ) D ( F `  k
) )  <  x
)  <->  ( A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X
)  /\  A. k  e.  ( ZZ>= `  j )
( ( F `  j ) D ( F `  k ) )  <  x ) )
292ad3antrrr 734 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  ( F `  j
)  e.  X )  /\  ( k  e. 
dom  F  /\  ( F `  k )  e.  X ) )  ->  D  e.  ( *Met `  X ) )
30 simplr 760 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  ( F `  j
)  e.  X )  /\  ( k  e. 
dom  F  /\  ( F `  k )  e.  X ) )  -> 
( F `  j
)  e.  X )
31 simprr 764 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  ( F `  j
)  e.  X )  /\  ( k  e. 
dom  F  /\  ( F `  k )  e.  X ) )  -> 
( F `  k
)  e.  X )
32 xmetsym 21304 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( D  e.  ( *Met `  X )  /\  ( F `  j )  e.  X  /\  ( F `  k
)  e.  X )  ->  ( ( F `
 j ) D ( F `  k
) )  =  ( ( F `  k
) D ( F `
 j ) ) )
3329, 30, 31, 32syl3anc 1264 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  ( F `  j
)  e.  X )  /\  ( k  e. 
dom  F  /\  ( F `  k )  e.  X ) )  -> 
( ( F `  j ) D ( F `  k ) )  =  ( ( F `  k ) D ( F `  j ) ) )
3433breq1d 4376 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  ( F `  j
)  e.  X )  /\  ( k  e. 
dom  F  /\  ( F `  k )  e.  X ) )  -> 
( ( ( F `
 j ) D ( F `  k
) )  <  x  <->  ( ( F `  k
) D ( F `
 j ) )  <  x ) )
3534biimpd 210 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  ( F `  j
)  e.  X )  /\  ( k  e. 
dom  F  /\  ( F `  k )  e.  X ) )  -> 
( ( ( F `
 j ) D ( F `  k
) )  <  x  ->  ( ( F `  k ) D ( F `  j ) )  <  x ) )
3635expimpd 606 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  Z )  /\  ( F `  j )  e.  X )  ->  (
( ( k  e. 
dom  F  /\  ( F `  k )  e.  X )  /\  (
( F `  j
) D ( F `
 k ) )  <  x )  -> 
( ( F `  k ) D ( F `  j ) )  <  x ) )
3736ralimdv 2775 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  Z )  /\  ( F `  j )  e.  X )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( k  e.  dom  F  /\  ( F `  k )  e.  X
)  /\  ( ( F `  j ) D ( F `  k ) )  < 
x )  ->  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) D ( F `  j ) )  <  x ) )
3828, 37syl5bir 221 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  Z )  /\  ( F `  j )  e.  X )  ->  (
( A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X
)  /\  A. k  e.  ( ZZ>= `  j )
( ( F `  j ) D ( F `  k ) )  <  x )  ->  A. k  e.  (
ZZ>= `  j ) ( ( F `  k
) D ( F `
 j ) )  <  x ) )
3938expd 437 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  Z )  /\  ( F `  j )  e.  X )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( F `  j ) D ( F `  k ) )  <  x  ->  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
) D ( F `
 j ) )  <  x ) ) )
4039impancom 441 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X ) )  ->  ( ( F `
 j )  e.  X  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  j ) D ( F `  k ) )  < 
x  ->  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) D ( F `  j ) )  <  x ) ) )
4127, 40mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X ) )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( F `  j ) D ( F `  k ) )  <  x  ->  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
) D ( F `
 j ) )  <  x ) )
4221, 41syl5bi 220 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X ) )  ->  ( A. m  e.  ( ZZ>= `  j )
( ( F `  j ) D ( F `  m ) )  <  x  ->  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
) D ( F `
 j ) )  <  x ) )
4317, 42syld 45 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  Z )  /\  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X ) )  ->  ( A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  k ) ( ( F `  k
) D ( F `
 m ) )  <  x  ->  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) D ( F `  j ) )  <  x ) )
4443imdistanda 697 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  Z )  ->  (
( A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X
)  /\  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  k ) ( ( F `  k
) D ( F `
 m ) )  <  x )  -> 
( A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X
)  /\  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) D ( F `  j ) )  <  x ) ) )
45 r19.26 2894 . . . . . . . . 9  |-  ( A. k  e.  ( ZZ>= `  j ) ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X )  /\  A. m  e.  ( ZZ>= `  k )
( ( F `  k ) D ( F `  m ) )  <  x )  <-> 
( A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X
)  /\  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  k ) ( ( F `  k
) D ( F `
 m ) )  <  x ) )
46 r19.26 2894 . . . . . . . . 9  |-  ( A. k  e.  ( ZZ>= `  j ) ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X )  /\  ( ( F `
 k ) D ( F `  j
) )  <  x
)  <->  ( A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X
)  /\  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) D ( F `  j ) )  <  x ) )
4744, 45, 463imtr4g 273 . . . . . . . 8  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( k  e.  dom  F  /\  ( F `  k )  e.  X
)  /\  A. m  e.  ( ZZ>= `  k )
( ( F `  k ) D ( F `  m ) )  <  x )  ->  A. k  e.  (
ZZ>= `  j ) ( ( k  e.  dom  F  /\  ( F `  k )  e.  X
)  /\  ( ( F `  k ) D ( F `  j ) )  < 
x ) ) )
48 df-3an 984 . . . . . . . . 9  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x )  <->  ( (
k  e.  dom  F  /\  ( F `  k
)  e.  X )  /\  A. m  e.  ( ZZ>= `  k )
( ( F `  k ) D ( F `  m ) )  <  x ) )
4948ralbii 2796 . . . . . . . 8  |-  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x )  <->  A. k  e.  ( ZZ>= `  j )
( ( k  e. 
dom  F  /\  ( F `  k )  e.  X )  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x ) )
50 df-3an 984 . . . . . . . . 9  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  <-> 
( ( k  e. 
dom  F  /\  ( F `  k )  e.  X )  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) )
5150ralbii 2796 . . . . . . . 8  |-  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x )  <->  A. k  e.  ( ZZ>= `  j )
( ( k  e. 
dom  F  /\  ( F `  k )  e.  X )  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) )
5247, 49, 513imtr4g 273 . . . . . . 7  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x )  ->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) ) )
5352reximdva 2839 . . . . . 6  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) ) )
5453ralimdv 2775 . . . . 5  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x )  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) ) )
5554anim2d 567 . . . 4  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x ) )  -> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) ) )
564, 55sylbid 218 . . 3  |-  ( ph  ->  ( F  e.  ( Cau `  D )  ->  ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) ) ) )
57 uzssz 11129 . . . . . . . . 9  |-  ( ZZ>= `  M )  C_  ZZ
581, 57eqsstri 3437 . . . . . . . 8  |-  Z  C_  ZZ
59 ssrexv 3469 . . . . . . . 8  |-  ( Z 
C_  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x )  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) )
6058, 59ax-mp 5 . . . . . . 7  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x )  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) )
6160ralimi 2758 . . . . . 6  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  ->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) )
6261anim2i 571 . . . . 5  |-  ( ( F  e.  ( X 
^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) )  ->  ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) )
63 iscau2 22189 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  ( F  e.  ( Cau `  D )  <->  ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) ) )
6462, 63syl5ibr 224 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  (
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) )  ->  F  e.  ( Cau `  D ) ) )
652, 64syl 17 . . 3  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) )  ->  F  e.  ( Cau `  D ) ) )
6656, 65impbid 193 . 2  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) ) )
67 simpl 458 . . . . . . . . 9  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
j  e.  Z )
681uztrn2 11127 . . . . . . . . 9  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
6967, 68jca 534 . . . . . . . 8  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
( j  e.  Z  /\  k  e.  Z
) )
70 iscau4.5 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
7170adantrl 720 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  Z ) )  -> 
( F `  k
)  =  A )
7271eleq1d 2490 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  Z ) )  -> 
( ( F `  k )  e.  X  <->  A  e.  X ) )
73 iscau4.6 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  j )  =  B )
7473adantrr 721 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  Z ) )  -> 
( F `  j
)  =  B )
7571, 74oveq12d 6267 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  Z ) )  -> 
( ( F `  k ) D ( F `  j ) )  =  ( A D B ) )
7675breq1d 4376 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  Z ) )  -> 
( ( ( F `
 k ) D ( F `  j
) )  <  x  <->  ( A D B )  <  x ) )
7772, 763anbi23d 1338 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  Z ) )  -> 
( ( k  e. 
dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x )  <->  ( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  < 
x ) ) )
7869, 77sylan2 476 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  <-> 
( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  <  x ) ) )
7978anassrs 652 . . . . . 6  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  <-> 
( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  <  x ) ) )
8079ralbidva 2801 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  <->  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  <  x ) ) )
8180rexbidva 2875 . . . 4  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  <->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  <  x ) ) )
8281ralbidv 2804 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  <  x ) ) )
8382anbi2d 708 . 2  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) )  <->  ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  <  x ) ) ) )
8466, 83bitrd 256 1  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  <  x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872   A.wral 2714   E.wrex 2715    C_ wss 3379   class class class wbr 4366   dom cdm 4796   ` cfv 5544  (class class class)co 6249    ^pm cpm 7428   CCcc 9488    < clt 9626   ZZcz 10888   ZZ>=cuz 11110   RR+crp 11253   *Metcxmt 18898   Caucca 22165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-op 3948  df-uni 4163  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-id 4711  df-po 4717  df-so 4718  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-1st 6751  df-2nd 6752  df-er 7318  df-map 7429  df-pm 7430  df-en 7525  df-dom 7526  df-sdom 7527  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9813  df-neg 9814  df-div 10221  df-2 10619  df-z 10889  df-uz 11111  df-rp 11254  df-xneg 11360  df-xadd 11361  df-psmet 18905  df-xmet 18906  df-bl 18908  df-cau 22168
This theorem is referenced by:  iscauf  22192  cmetcaulem  22200  caures  31996  caushft  31997
  Copyright terms: Public domain W3C validator