MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscau3 Structured version   Unicode version

Theorem iscau3 22235
Description: Express the Cauchy sequence property in the more conventional three-quantifier form. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
iscau3.2  |-  Z  =  ( ZZ>= `  M )
iscau3.3  |-  ( ph  ->  D  e.  ( *Met `  X ) )
iscau3.4  |-  ( ph  ->  M  e.  ZZ )
Assertion
Ref Expression
iscau3  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x ) ) ) )
Distinct variable groups:    j, k, m, x, D    j, F, k, m, x    ph, j,
k, x    j, X, k, m, x    j, M   
j, Z, k, x
Allowed substitution hints:    ph( m)    M( x, k, m)    Z( m)

Proof of Theorem iscau3
StepHypRef Expression
1 iscau3.3 . . 3  |-  ( ph  ->  D  e.  ( *Met `  X ) )
2 iscau2 22234 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( F  e.  ( Cau `  D )  <->  ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) ) )
31, 2syl 17 . 2  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) ) )
41adantr 466 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X  ^pm  CC ) )  ->  D  e.  ( *Met `  X
) )
5 ssid 3483 . . . . . . 7  |-  ZZ  C_  ZZ
6 simpr 462 . . . . . . 7  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X )  ->  ( F `  k )  e.  X
)
7 eleq1 2494 . . . . . . 7  |-  ( ( F `  k )  =  ( F `  j )  ->  (
( F `  k
)  e.  X  <->  ( F `  j )  e.  X
) )
8 eleq1 2494 . . . . . . 7  |-  ( ( F `  k )  =  ( F `  m )  ->  (
( F `  k
)  e.  X  <->  ( F `  m )  e.  X
) )
9 xmetsym 21349 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  ( F `  j )  e.  X  /\  ( F `  k
)  e.  X )  ->  ( ( F `
 j ) D ( F `  k
) )  =  ( ( F `  k
) D ( F `
 j ) ) )
109fveq2d 5882 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  ( F `  j )  e.  X  /\  ( F `  k
)  e.  X )  ->  (  _I  `  ( ( F `  j ) D ( F `  k ) ) )  =  (  _I  `  ( ( F `  k ) D ( F `  j ) ) ) )
11 xmetsym 21349 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  ( F `  m )  e.  X  /\  ( F `  j
)  e.  X )  ->  ( ( F `
 m ) D ( F `  j
) )  =  ( ( F `  j
) D ( F `
 m ) ) )
1211fveq2d 5882 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  ( F `  m )  e.  X  /\  ( F `  j
)  e.  X )  ->  (  _I  `  ( ( F `  m ) D ( F `  j ) ) )  =  (  _I  `  ( ( F `  j ) D ( F `  m ) ) ) )
13 simp1 1005 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  D  e.  ( *Met `  X
) )
14 simp2l 1031 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( F `  k )  e.  X
)
15 simp3l 1033 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( F `  j )  e.  X
)
16 xmetcl 21333 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  ( F `  k )  e.  X  /\  ( F `  j
)  e.  X )  ->  ( ( F `
 k ) D ( F `  j
) )  e.  RR* )
1713, 14, 15, 16syl3anc 1264 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( ( F `  k ) D ( F `  j ) )  e. 
RR* )
18 simp2r 1032 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( F `  m )  e.  X
)
19 xmetcl 21333 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  ( F `  j )  e.  X  /\  ( F `  m
)  e.  X )  ->  ( ( F `
 j ) D ( F `  m
) )  e.  RR* )
2013, 15, 18, 19syl3anc 1264 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( ( F `  j ) D ( F `  m ) )  e. 
RR* )
21 simp3r 1034 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  x  e.  RR )
2221rehalfcld 10860 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( x  /  2 )  e.  RR )
2322rexrd 9691 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( x  /  2 )  e. 
RR* )
24 xlt2add 11547 . . . . . . . . . 10  |-  ( ( ( ( ( F `
 k ) D ( F `  j
) )  e.  RR*  /\  ( ( F `  j ) D ( F `  m ) )  e.  RR* )  /\  ( ( x  / 
2 )  e.  RR*  /\  ( x  /  2
)  e.  RR* )
)  ->  ( (
( ( F `  k ) D ( F `  j ) )  <  ( x  /  2 )  /\  ( ( F `  j ) D ( F `  m ) )  <  ( x  /  2 ) )  ->  ( ( ( F `  k ) D ( F `  j ) ) +e ( ( F `
 j ) D ( F `  m
) ) )  < 
( ( x  / 
2 ) +e
( x  /  2
) ) ) )
2517, 20, 23, 23, 24syl22anc 1265 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( (
( ( F `  k ) D ( F `  j ) )  <  ( x  /  2 )  /\  ( ( F `  j ) D ( F `  m ) )  <  ( x  /  2 ) )  ->  ( ( ( F `  k ) D ( F `  j ) ) +e ( ( F `
 j ) D ( F `  m
) ) )  < 
( ( x  / 
2 ) +e
( x  /  2
) ) ) )
26 rexadd 11526 . . . . . . . . . . . . 13  |-  ( ( ( x  /  2
)  e.  RR  /\  ( x  /  2
)  e.  RR )  ->  ( ( x  /  2 ) +e ( x  / 
2 ) )  =  ( ( x  / 
2 )  +  ( x  /  2 ) ) )
2722, 22, 26syl2anc 665 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( (
x  /  2 ) +e ( x  /  2 ) )  =  ( ( x  /  2 )  +  ( x  /  2
) ) )
2821recnd 9670 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( *Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  x  e.  CC )
29282halvesd 10859 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( (
x  /  2 )  +  ( x  / 
2 ) )  =  x )
3027, 29eqtrd 2463 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( (
x  /  2 ) +e ( x  /  2 ) )  =  x )
3130breq2d 4432 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( (
( ( F `  k ) D ( F `  j ) ) +e ( ( F `  j
) D ( F `
 m ) ) )  <  ( ( x  /  2 ) +e ( x  /  2 ) )  <-> 
( ( ( F `
 k ) D ( F `  j
) ) +e
( ( F `  j ) D ( F `  m ) ) )  <  x
) )
32 xmettri 21353 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X  /\  ( F `
 j )  e.  X ) )  -> 
( ( F `  k ) D ( F `  m ) )  <_  ( (
( F `  k
) D ( F `
 j ) ) +e ( ( F `  j ) D ( F `  m ) ) ) )
3313, 14, 18, 15, 32syl13anc 1266 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( ( F `  k ) D ( F `  m ) )  <_ 
( ( ( F `
 k ) D ( F `  j
) ) +e
( ( F `  j ) D ( F `  m ) ) ) )
34 xmetcl 21333 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( *Met `  X )  /\  ( F `  k )  e.  X  /\  ( F `  m
)  e.  X )  ->  ( ( F `
 k ) D ( F `  m
) )  e.  RR* )
3513, 14, 18, 34syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( ( F `  k ) D ( F `  m ) )  e. 
RR* )
3617, 20xaddcld 11588 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( (
( F `  k
) D ( F `
 j ) ) +e ( ( F `  j ) D ( F `  m ) ) )  e.  RR* )
3721rexrd 9691 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  x  e.  RR* )
38 xrlelttr 11454 . . . . . . . . . . . 12  |-  ( ( ( ( F `  k ) D ( F `  m ) )  e.  RR*  /\  (
( ( F `  k ) D ( F `  j ) ) +e ( ( F `  j
) D ( F `
 m ) ) )  e.  RR*  /\  x  e.  RR* )  ->  (
( ( ( F `
 k ) D ( F `  m
) )  <_  (
( ( F `  k ) D ( F `  j ) ) +e ( ( F `  j
) D ( F `
 m ) ) )  /\  ( ( ( F `  k
) D ( F `
 j ) ) +e ( ( F `  j ) D ( F `  m ) ) )  <  x )  -> 
( ( F `  k ) D ( F `  m ) )  <  x ) )
3935, 36, 37, 38syl3anc 1264 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( (
( ( F `  k ) D ( F `  m ) )  <_  ( (
( F `  k
) D ( F `
 j ) ) +e ( ( F `  j ) D ( F `  m ) ) )  /\  ( ( ( F `  k ) D ( F `  j ) ) +e ( ( F `
 j ) D ( F `  m
) ) )  < 
x )  ->  (
( F `  k
) D ( F `
 m ) )  <  x ) )
4033, 39mpand 679 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( (
( ( F `  k ) D ( F `  j ) ) +e ( ( F `  j
) D ( F `
 m ) ) )  <  x  -> 
( ( F `  k ) D ( F `  m ) )  <  x ) )
4131, 40sylbid 218 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( (
( ( F `  k ) D ( F `  j ) ) +e ( ( F `  j
) D ( F `
 m ) ) )  <  ( ( x  /  2 ) +e ( x  /  2 ) )  ->  ( ( F `
 k ) D ( F `  m
) )  <  x
) )
4225, 41syld 45 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( (
( ( F `  k ) D ( F `  j ) )  <  ( x  /  2 )  /\  ( ( F `  j ) D ( F `  m ) )  <  ( x  /  2 ) )  ->  ( ( F `
 k ) D ( F `  m
) )  <  x
) )
43 ovex 6330 . . . . . . . . . . 11  |-  ( ( F `  k ) D ( F `  j ) )  e. 
_V
44 fvi 5935 . . . . . . . . . . 11  |-  ( ( ( F `  k
) D ( F `
 j ) )  e.  _V  ->  (  _I  `  ( ( F `
 k ) D ( F `  j
) ) )  =  ( ( F `  k ) D ( F `  j ) ) )
4543, 44ax-mp 5 . . . . . . . . . 10  |-  (  _I 
`  ( ( F `
 k ) D ( F `  j
) ) )  =  ( ( F `  k ) D ( F `  j ) )
4645breq1i 4427 . . . . . . . . 9  |-  ( (  _I  `  ( ( F `  k ) D ( F `  j ) ) )  <  ( x  / 
2 )  <->  ( ( F `  k ) D ( F `  j ) )  < 
( x  /  2
) )
47 ovex 6330 . . . . . . . . . . 11  |-  ( ( F `  j ) D ( F `  m ) )  e. 
_V
48 fvi 5935 . . . . . . . . . . 11  |-  ( ( ( F `  j
) D ( F `
 m ) )  e.  _V  ->  (  _I  `  ( ( F `
 j ) D ( F `  m
) ) )  =  ( ( F `  j ) D ( F `  m ) ) )
4947, 48ax-mp 5 . . . . . . . . . 10  |-  (  _I 
`  ( ( F `
 j ) D ( F `  m
) ) )  =  ( ( F `  j ) D ( F `  m ) )
5049breq1i 4427 . . . . . . . . 9  |-  ( (  _I  `  ( ( F `  j ) D ( F `  m ) ) )  <  ( x  / 
2 )  <->  ( ( F `  j ) D ( F `  m ) )  < 
( x  /  2
) )
5146, 50anbi12i 701 . . . . . . . 8  |-  ( ( (  _I  `  (
( F `  k
) D ( F `
 j ) ) )  <  ( x  /  2 )  /\  (  _I  `  ( ( F `  j ) D ( F `  m ) ) )  <  ( x  / 
2 ) )  <->  ( (
( F `  k
) D ( F `
 j ) )  <  ( x  / 
2 )  /\  (
( F `  j
) D ( F `
 m ) )  <  ( x  / 
2 ) ) )
52 ovex 6330 . . . . . . . . . 10  |-  ( ( F `  k ) D ( F `  m ) )  e. 
_V
53 fvi 5935 . . . . . . . . . 10  |-  ( ( ( F `  k
) D ( F `
 m ) )  e.  _V  ->  (  _I  `  ( ( F `
 k ) D ( F `  m
) ) )  =  ( ( F `  k ) D ( F `  m ) ) )
5452, 53ax-mp 5 . . . . . . . . 9  |-  (  _I 
`  ( ( F `
 k ) D ( F `  m
) ) )  =  ( ( F `  k ) D ( F `  m ) )
5554breq1i 4427 . . . . . . . 8  |-  ( (  _I  `  ( ( F `  k ) D ( F `  m ) ) )  <  x  <->  ( ( F `  k ) D ( F `  m ) )  < 
x )
5642, 51, 553imtr4g 273 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( (
(  _I  `  (
( F `  k
) D ( F `
 j ) ) )  <  ( x  /  2 )  /\  (  _I  `  ( ( F `  j ) D ( F `  m ) ) )  <  ( x  / 
2 ) )  -> 
(  _I  `  (
( F `  k
) D ( F `
 m ) ) )  <  x ) )
575, 6, 7, 8, 10, 12, 56cau3lem 13406 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  ( A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( k  e. 
dom  F  /\  ( F `  k )  e.  X )  /\  (  _I  `  ( ( F `
 k ) D ( F `  j
) ) )  < 
x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( k  e. 
dom  F  /\  ( F `  k )  e.  X )  /\  A. m  e.  ( ZZ>= `  k ) (  _I 
`  ( ( F `
 k ) D ( F `  m
) ) )  < 
x ) ) )
584, 57syl 17 . . . . 5  |-  ( (
ph  /\  F  e.  ( X  ^pm  CC ) )  ->  ( A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( k  e. 
dom  F  /\  ( F `  k )  e.  X )  /\  (  _I  `  ( ( F `
 k ) D ( F `  j
) ) )  < 
x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( k  e. 
dom  F  /\  ( F `  k )  e.  X )  /\  A. m  e.  ( ZZ>= `  k ) (  _I 
`  ( ( F `
 k ) D ( F `  m
) ) )  < 
x ) ) )
5945breq1i 4427 . . . . . . . . . 10  |-  ( (  _I  `  ( ( F `  k ) D ( F `  j ) ) )  <  x  <->  ( ( F `  k ) D ( F `  j ) )  < 
x )
6059anbi2i 698 . . . . . . . . 9  |-  ( ( ( k  e.  dom  F  /\  ( F `  k )  e.  X
)  /\  (  _I  `  ( ( F `  k ) D ( F `  j ) ) )  <  x
)  <->  ( ( k  e.  dom  F  /\  ( F `  k )  e.  X )  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) )
61 df-3an 984 . . . . . . . . 9  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  <-> 
( ( k  e. 
dom  F  /\  ( F `  k )  e.  X )  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) )
6260, 61bitr4i 255 . . . . . . . 8  |-  ( ( ( k  e.  dom  F  /\  ( F `  k )  e.  X
)  /\  (  _I  `  ( ( F `  k ) D ( F `  j ) ) )  <  x
)  <->  ( k  e. 
dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) )
6362ralbii 2856 . . . . . . 7  |-  ( A. k  e.  ( ZZ>= `  j ) ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X )  /\  (  _I  `  ( ( F `  k ) D ( F `  j ) ) )  <  x
)  <->  A. k  e.  (
ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) )
6463rexbii 2927 . . . . . 6  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X )  /\  (  _I  `  ( ( F `  k ) D ( F `  j ) ) )  <  x
)  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) )
6564ralbii 2856 . . . . 5  |-  ( A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( k  e. 
dom  F  /\  ( F `  k )  e.  X )  /\  (  _I  `  ( ( F `
 k ) D ( F `  j
) ) )  < 
x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) )
6655ralbii 2856 . . . . . . . . . 10  |-  ( A. m  e.  ( ZZ>= `  k ) (  _I 
`  ( ( F `
 k ) D ( F `  m
) ) )  < 
x  <->  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x )
6766anbi2i 698 . . . . . . . . 9  |-  ( ( ( k  e.  dom  F  /\  ( F `  k )  e.  X
)  /\  A. m  e.  ( ZZ>= `  k )
(  _I  `  (
( F `  k
) D ( F `
 m ) ) )  <  x )  <-> 
( ( k  e. 
dom  F  /\  ( F `  k )  e.  X )  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x ) )
68 df-3an 984 . . . . . . . . 9  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x )  <->  ( (
k  e.  dom  F  /\  ( F `  k
)  e.  X )  /\  A. m  e.  ( ZZ>= `  k )
( ( F `  k ) D ( F `  m ) )  <  x ) )
6967, 68bitr4i 255 . . . . . . . 8  |-  ( ( ( k  e.  dom  F  /\  ( F `  k )  e.  X
)  /\  A. m  e.  ( ZZ>= `  k )
(  _I  `  (
( F `  k
) D ( F `
 m ) ) )  <  x )  <-> 
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x ) )
7069ralbii 2856 . . . . . . 7  |-  ( A. k  e.  ( ZZ>= `  j ) ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X )  /\  A. m  e.  ( ZZ>= `  k )
(  _I  `  (
( F `  k
) D ( F `
 m ) ) )  <  x )  <->  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x ) )
7170rexbii 2927 . . . . . 6  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X )  /\  A. m  e.  ( ZZ>= `  k )
(  _I  `  (
( F `  k
) D ( F `
 m ) ) )  <  x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x ) )
7271ralbii 2856 . . . . 5  |-  ( A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( k  e. 
dom  F  /\  ( F `  k )  e.  X )  /\  A. m  e.  ( ZZ>= `  k ) (  _I 
`  ( ( F `
 k ) D ( F `  m
) ) )  < 
x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x ) )
7358, 65, 723bitr3g 290 . . . 4  |-  ( (
ph  /\  F  e.  ( X  ^pm  CC ) )  ->  ( A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x ) ) )
74 iscau3.4 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
7574adantr 466 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X  ^pm  CC ) )  ->  M  e.  ZZ )
76 iscau3.2 . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
7776rexuz3 13400 . . . . . 6  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x ) ) )
7875, 77syl 17 . . . . 5  |-  ( (
ph  /\  F  e.  ( X  ^pm  CC ) )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x ) ) )
7978ralbidv 2864 . . . 4  |-  ( (
ph  /\  F  e.  ( X  ^pm  CC ) )  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x ) ) )
8073, 79bitr4d 259 . . 3  |-  ( (
ph  /\  F  e.  ( X  ^pm  CC ) )  ->  ( A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x ) ) )
8180pm5.32da 645 . 2  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) )  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x ) ) ) )
823, 81bitrd 256 1  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868   A.wral 2775   E.wrex 2776   _Vcvv 3081   class class class wbr 4420    _I cid 4760   dom cdm 4850   ` cfv 5598  (class class class)co 6302    ^pm cpm 7478   CCcc 9538   RRcr 9539    + caddc 9543   RR*cxr 9675    < clt 9676    <_ cle 9677    / cdiv 10270   2c2 10660   ZZcz 10938   ZZ>=cuz 11160   RR+crp 11303   +ecxad 11408   *Metcxmt 18943   Caucca 22210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594  ax-cnex 9596  ax-resscn 9597  ax-1cn 9598  ax-icn 9599  ax-addcl 9600  ax-addrcl 9601  ax-mulcl 9602  ax-mulrcl 9603  ax-mulcom 9604  ax-addass 9605  ax-mulass 9606  ax-distr 9607  ax-i2m1 9608  ax-1ne0 9609  ax-1rid 9610  ax-rnegex 9611  ax-rrecex 9612  ax-cnre 9613  ax-pre-lttri 9614  ax-pre-lttrn 9615  ax-pre-ltadd 9616  ax-pre-mulgt0 9617
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-id 4765  df-po 4771  df-so 4772  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ima 4863  df-iota 5562  df-fun 5600  df-fn 5601  df-f 5602  df-f1 5603  df-fo 5604  df-f1o 5605  df-fv 5606  df-riota 6264  df-ov 6305  df-oprab 6306  df-mpt2 6307  df-1st 6804  df-2nd 6805  df-er 7368  df-map 7479  df-pm 7480  df-en 7575  df-dom 7576  df-sdom 7577  df-pnf 9678  df-mnf 9679  df-xr 9680  df-ltxr 9681  df-le 9682  df-sub 9863  df-neg 9864  df-div 10271  df-2 10669  df-z 10939  df-uz 11161  df-rp 11304  df-xneg 11410  df-xadd 11411  df-psmet 18950  df-xmet 18951  df-bl 18953  df-cau 22213
This theorem is referenced by:  iscau4  22236  caucfil  22240  cmetcaulem  22245  heibor1lem  32055
  Copyright terms: Public domain W3C validator