MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscard3 Structured version   Unicode version

Theorem iscard3 8263
Description: Two ways to express the property of being a cardinal number. (Contributed by NM, 9-Nov-2003.)
Assertion
Ref Expression
iscard3  |-  ( (
card `  A )  =  A  <->  A  e.  ( om  u.  ran  aleph ) )

Proof of Theorem iscard3
StepHypRef Expression
1 cardon 8114 . . . . . . . . 9  |-  ( card `  A )  e.  On
2 eleq1 2503 . . . . . . . . 9  |-  ( (
card `  A )  =  A  ->  ( (
card `  A )  e.  On  <->  A  e.  On ) )
31, 2mpbii 211 . . . . . . . 8  |-  ( (
card `  A )  =  A  ->  A  e.  On )
4 eloni 4729 . . . . . . . 8  |-  ( A  e.  On  ->  Ord  A )
53, 4syl 16 . . . . . . 7  |-  ( (
card `  A )  =  A  ->  Ord  A
)
6 ordom 6485 . . . . . . 7  |-  Ord  om
7 ordtri2or 4814 . . . . . . 7  |-  ( ( Ord  A  /\  Ord  om )  ->  ( A  e.  om  \/  om  C_  A
) )
85, 6, 7sylancl 662 . . . . . 6  |-  ( (
card `  A )  =  A  ->  ( A  e.  om  \/  om  C_  A ) )
98ord 377 . . . . 5  |-  ( (
card `  A )  =  A  ->  ( -.  A  e.  om  ->  om  C_  A ) )
10 isinfcard 8262 . . . . . . 7  |-  ( ( om  C_  A  /\  ( card `  A )  =  A )  <->  A  e.  ran  aleph )
1110biimpi 194 . . . . . 6  |-  ( ( om  C_  A  /\  ( card `  A )  =  A )  ->  A  e.  ran  aleph )
1211expcom 435 . . . . 5  |-  ( (
card `  A )  =  A  ->  ( om  C_  A  ->  A  e. 
ran  aleph ) )
139, 12syld 44 . . . 4  |-  ( (
card `  A )  =  A  ->  ( -.  A  e.  om  ->  A  e.  ran  aleph ) )
1413orrd 378 . . 3  |-  ( (
card `  A )  =  A  ->  ( A  e.  om  \/  A  e.  ran  aleph ) )
15 cardnn 8133 . . . 4  |-  ( A  e.  om  ->  ( card `  A )  =  A )
1610bicomi 202 . . . . 5  |-  ( A  e.  ran  aleph  <->  ( om  C_  A  /\  ( card `  A )  =  A ) )
1716simprbi 464 . . . 4  |-  ( A  e.  ran  aleph  ->  ( card `  A )  =  A )
1815, 17jaoi 379 . . 3  |-  ( ( A  e.  om  \/  A  e.  ran  aleph )  -> 
( card `  A )  =  A )
1914, 18impbii 188 . 2  |-  ( (
card `  A )  =  A  <->  ( A  e. 
om  \/  A  e.  ran  aleph ) )
20 elun 3497 . 2  |-  ( A  e.  ( om  u.  ran  aleph )  <->  ( A  e.  om  \/  A  e. 
ran  aleph ) )
2119, 20bitr4i 252 1  |-  ( (
card `  A )  =  A  <->  A  e.  ( om  u.  ran  aleph ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756    u. cun 3326    C_ wss 3328   Ord word 4718   Oncon0 4719   ran crn 4841   ` cfv 5418   omcom 6476   cardccrd 8105   alephcale 8106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-om 6477  df-recs 6832  df-rdg 6866  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-oi 7724  df-har 7773  df-card 8109  df-aleph 8110
This theorem is referenced by:  cardnum  8264  carduniima  8266  cardinfima  8267  cfpwsdom  8748  gch2  8842
  Copyright terms: Public domain W3C validator