MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscard Structured version   Unicode version

Theorem iscard 8347
Description: Two ways to express the property of being a cardinal number. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
iscard  |-  ( (
card `  A )  =  A  <->  ( A  e.  On  /\  A. x  e.  A  x  ~<  A ) )
Distinct variable group:    x, A

Proof of Theorem iscard
StepHypRef Expression
1 cardon 8316 . . 3  |-  ( card `  A )  e.  On
2 eleq1 2526 . . 3  |-  ( (
card `  A )  =  A  ->  ( (
card `  A )  e.  On  <->  A  e.  On ) )
31, 2mpbii 211 . 2  |-  ( (
card `  A )  =  A  ->  A  e.  On )
4 cardonle 8329 . . . 4  |-  ( A  e.  On  ->  ( card `  A )  C_  A )
5 eqss 3504 . . . . 5  |-  ( (
card `  A )  =  A  <->  ( ( card `  A )  C_  A  /\  A  C_  ( card `  A ) ) )
65baibr 902 . . . 4  |-  ( (
card `  A )  C_  A  ->  ( A  C_  ( card `  A
)  <->  ( card `  A
)  =  A ) )
74, 6syl 16 . . 3  |-  ( A  e.  On  ->  ( A  C_  ( card `  A
)  <->  ( card `  A
)  =  A ) )
8 onelon 4892 . . . . . 6  |-  ( ( A  e.  On  /\  x  e.  A )  ->  x  e.  On )
9 onenon 8321 . . . . . . 7  |-  ( A  e.  On  ->  A  e.  dom  card )
109adantr 463 . . . . . 6  |-  ( ( A  e.  On  /\  x  e.  A )  ->  A  e.  dom  card )
11 cardsdomel 8346 . . . . . 6  |-  ( ( x  e.  On  /\  A  e.  dom  card )  ->  ( x  ~<  A  <->  x  e.  ( card `  A )
) )
128, 10, 11syl2anc 659 . . . . 5  |-  ( ( A  e.  On  /\  x  e.  A )  ->  ( x  ~<  A  <->  x  e.  ( card `  A )
) )
1312ralbidva 2890 . . . 4  |-  ( A  e.  On  ->  ( A. x  e.  A  x  ~<  A  <->  A. x  e.  A  x  e.  ( card `  A )
) )
14 dfss3 3479 . . . 4  |-  ( A 
C_  ( card `  A
)  <->  A. x  e.  A  x  e.  ( card `  A ) )
1513, 14syl6rbbr 264 . . 3  |-  ( A  e.  On  ->  ( A  C_  ( card `  A
)  <->  A. x  e.  A  x  ~<  A ) )
167, 15bitr3d 255 . 2  |-  ( A  e.  On  ->  (
( card `  A )  =  A  <->  A. x  e.  A  x  ~<  A ) )
173, 16biadan2 640 1  |-  ( (
card `  A )  =  A  <->  ( A  e.  On  /\  A. x  e.  A  x  ~<  A ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804    C_ wss 3461   class class class wbr 4439   Oncon0 4867   dom cdm 4988   ` cfv 5570    ~< csdm 7508   cardccrd 8307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-card 8311
This theorem is referenced by:  cardprclem  8351  cardmin2  8370  infxpenlem  8382  alephsuc2  8452  cardmin  8930  alephreg  8948  pwcfsdom  8949  winalim2  9063  gchina  9066  inar1  9142  r1tskina  9149  gruina  9185
  Copyright terms: Public domain W3C validator