MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscard Structured version   Visualization version   Unicode version

Theorem iscard 8434
Description: Two ways to express the property of being a cardinal number. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
iscard  |-  ( (
card `  A )  =  A  <->  ( A  e.  On  /\  A. x  e.  A  x  ~<  A ) )
Distinct variable group:    x, A

Proof of Theorem iscard
StepHypRef Expression
1 cardon 8403 . . 3  |-  ( card `  A )  e.  On
2 eleq1 2527 . . 3  |-  ( (
card `  A )  =  A  ->  ( (
card `  A )  e.  On  <->  A  e.  On ) )
31, 2mpbii 216 . 2  |-  ( (
card `  A )  =  A  ->  A  e.  On )
4 cardonle 8416 . . . 4  |-  ( A  e.  On  ->  ( card `  A )  C_  A )
5 eqss 3458 . . . . 5  |-  ( (
card `  A )  =  A  <->  ( ( card `  A )  C_  A  /\  A  C_  ( card `  A ) ) )
65baibr 920 . . . 4  |-  ( (
card `  A )  C_  A  ->  ( A  C_  ( card `  A
)  <->  ( card `  A
)  =  A ) )
74, 6syl 17 . . 3  |-  ( A  e.  On  ->  ( A  C_  ( card `  A
)  <->  ( card `  A
)  =  A ) )
8 onelon 5466 . . . . . 6  |-  ( ( A  e.  On  /\  x  e.  A )  ->  x  e.  On )
9 onenon 8408 . . . . . . 7  |-  ( A  e.  On  ->  A  e.  dom  card )
109adantr 471 . . . . . 6  |-  ( ( A  e.  On  /\  x  e.  A )  ->  A  e.  dom  card )
11 cardsdomel 8433 . . . . . 6  |-  ( ( x  e.  On  /\  A  e.  dom  card )  ->  ( x  ~<  A  <->  x  e.  ( card `  A )
) )
128, 10, 11syl2anc 671 . . . . 5  |-  ( ( A  e.  On  /\  x  e.  A )  ->  ( x  ~<  A  <->  x  e.  ( card `  A )
) )
1312ralbidva 2835 . . . 4  |-  ( A  e.  On  ->  ( A. x  e.  A  x  ~<  A  <->  A. x  e.  A  x  e.  ( card `  A )
) )
14 dfss3 3433 . . . 4  |-  ( A 
C_  ( card `  A
)  <->  A. x  e.  A  x  e.  ( card `  A ) )
1513, 14syl6rbbr 272 . . 3  |-  ( A  e.  On  ->  ( A  C_  ( card `  A
)  <->  A. x  e.  A  x  ~<  A ) )
167, 15bitr3d 263 . 2  |-  ( A  e.  On  ->  (
( card `  A )  =  A  <->  A. x  e.  A  x  ~<  A ) )
173, 16biadan2 652 1  |-  ( (
card `  A )  =  A  <->  ( A  e.  On  /\  A. x  e.  A  x  ~<  A ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 189    /\ wa 375    = wceq 1454    e. wcel 1897   A.wral 2748    C_ wss 3415   class class class wbr 4415   dom cdm 4852   Oncon0 5441   ` cfv 5600    ~< csdm 7593   cardccrd 8394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-ral 2753  df-rex 2754  df-rab 2757  df-v 3058  df-sbc 3279  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-pss 3431  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-tp 3984  df-op 3986  df-uni 4212  df-int 4248  df-br 4416  df-opab 4475  df-mpt 4476  df-tr 4511  df-eprel 4763  df-id 4767  df-po 4773  df-so 4774  df-fr 4811  df-we 4813  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-ord 5444  df-on 5445  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-f1 5605  df-fo 5606  df-f1o 5607  df-fv 5608  df-er 7388  df-en 7595  df-dom 7596  df-sdom 7597  df-card 8398
This theorem is referenced by:  cardprclem  8438  cardmin2  8457  infxpenlem  8469  alephsuc2  8536  cardmin  9014  alephreg  9032  pwcfsdom  9033  winalim2  9146  gchina  9149  inar1  9225  r1tskina  9232  gruina  9268
  Copyright terms: Public domain W3C validator