Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbnd2 Structured version   Visualization version   Unicode version

Theorem isbnd2 32108
Description: The predicate "is a bounded metric space". Uses a single point instead of an arbitrary point in the space. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
isbnd2  |-  ( ( M  e.  ( Bnd `  X )  /\  X  =/=  (/) )  <->  ( M  e.  ( *Met `  X )  /\  E. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r ) ) )
Distinct variable groups:    x, r, M    X, r, x

Proof of Theorem isbnd2
Dummy variables  s 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isbndx 32107 . . 3  |-  ( M  e.  ( Bnd `  X
)  <->  ( M  e.  ( *Met `  X )  /\  A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r ) ) )
21anbi1i 700 . 2  |-  ( ( M  e.  ( Bnd `  X )  /\  X  =/=  (/) )  <->  ( ( M  e.  ( *Met `  X )  /\  A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r ) )  /\  X  =/=  (/) ) )
3 anass 654 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M
) r ) )  /\  X  =/=  (/) )  <->  ( M  e.  ( *Met `  X )  /\  ( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  /\  X  =/=  (/) ) ) )
4 r19.2z 3857 . . . . 5  |-  ( ( X  =/=  (/)  /\  A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r ) )  ->  E. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M
) r ) )
54ancoms 455 . . . 4  |-  ( ( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  /\  X  =/=  (/) )  ->  E. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r ) )
6 oveq1 6295 . . . . . . . 8  |-  ( x  =  y  ->  (
x ( ball `  M
) r )  =  ( y ( ball `  M ) r ) )
76eqeq2d 2460 . . . . . . 7  |-  ( x  =  y  ->  ( X  =  ( x
( ball `  M )
r )  <->  X  =  ( y ( ball `  M ) r ) ) )
8 oveq2 6296 . . . . . . . 8  |-  ( r  =  s  ->  (
y ( ball `  M
) r )  =  ( y ( ball `  M ) s ) )
98eqeq2d 2460 . . . . . . 7  |-  ( r  =  s  ->  ( X  =  ( y
( ball `  M )
r )  <->  X  =  ( y ( ball `  M ) s ) ) )
107, 9cbvrex2v 3027 . . . . . 6  |-  ( E. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  <->  E. y  e.  X  E. s  e.  RR+  X  =  ( y ( ball `  M ) s ) )
11 2rp 11304 . . . . . . . . . . . . 13  |-  2  e.  RR+
12 rpmulcl 11321 . . . . . . . . . . . . 13  |-  ( ( 2  e.  RR+  /\  s  e.  RR+ )  ->  (
2  x.  s )  e.  RR+ )
1311, 12mpan 675 . . . . . . . . . . . 12  |-  ( s  e.  RR+  ->  ( 2  x.  s )  e.  RR+ )
1413ad2antll 734 . . . . . . . . . . 11  |-  ( ( M  e.  ( *Met `  X )  /\  ( y  e.  X  /\  s  e.  RR+ ) )  ->  (
2  x.  s )  e.  RR+ )
1514ad2antrr 731 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  (
y  e.  X  /\  s  e.  RR+ ) )  /\  x  e.  X
)  /\  X  =  ( y ( ball `  M ) s ) )  ->  ( 2  x.  s )  e.  RR+ )
16 rpcn 11307 . . . . . . . . . . . . . . . . . . 19  |-  ( s  e.  RR+  ->  s  e.  CC )
17 2cnd 10679 . . . . . . . . . . . . . . . . . . 19  |-  ( s  e.  RR+  ->  2  e.  CC )
18 2ne0 10699 . . . . . . . . . . . . . . . . . . . 20  |-  2  =/=  0
1918a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( s  e.  RR+  ->  2  =/=  0 )
20 divcan3 10291 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( s  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( 2  x.  s
)  /  2 )  =  s )
2120eqcomd 2456 . . . . . . . . . . . . . . . . . . 19  |-  ( ( s  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  s  =  ( ( 2  x.  s )  / 
2 ) )
2216, 17, 19, 21syl3anc 1267 . . . . . . . . . . . . . . . . . 18  |-  ( s  e.  RR+  ->  s  =  ( ( 2  x.  s )  /  2
) )
2322oveq2d 6304 . . . . . . . . . . . . . . . . 17  |-  ( s  e.  RR+  ->  ( y ( ball `  M
) s )  =  ( y ( ball `  M ) ( ( 2  x.  s )  /  2 ) ) )
2423eqeq2d 2460 . . . . . . . . . . . . . . . 16  |-  ( s  e.  RR+  ->  ( X  =  ( y (
ball `  M )
s )  <->  X  =  ( y ( ball `  M ) ( ( 2  x.  s )  /  2 ) ) ) )
2524biimpd 211 . . . . . . . . . . . . . . 15  |-  ( s  e.  RR+  ->  ( X  =  ( y (
ball `  M )
s )  ->  X  =  ( y (
ball `  M )
( ( 2  x.  s )  /  2
) ) ) )
2625ad2antll 734 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ( *Met `  X )  /\  ( y  e.  X  /\  s  e.  RR+ ) )  ->  ( X  =  ( y
( ball `  M )
s )  ->  X  =  ( y (
ball `  M )
( ( 2  x.  s )  /  2
) ) ) )
2726adantr 467 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( *Met `  X
)  /\  ( y  e.  X  /\  s  e.  RR+ ) )  /\  x  e.  X )  ->  ( X  =  ( y ( ball `  M
) s )  ->  X  =  ( y
( ball `  M )
( ( 2  x.  s )  /  2
) ) ) )
2827imp 431 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  (
y  e.  X  /\  s  e.  RR+ ) )  /\  x  e.  X
)  /\  X  =  ( y ( ball `  M ) s ) )  ->  X  =  ( y ( ball `  M ) ( ( 2  x.  s )  /  2 ) ) )
29 simpr 463 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  (
y  e.  X  /\  s  e.  RR+ ) )  /\  x  e.  X
)  /\  X  =  ( y ( ball `  M ) ( ( 2  x.  s )  /  2 ) ) )  ->  X  =  ( y ( ball `  M ) ( ( 2  x.  s )  /  2 ) ) )
30 eleq2 2517 . . . . . . . . . . . . . . . 16  |-  ( X  =  ( y (
ball `  M )
( ( 2  x.  s )  /  2
) )  ->  (
x  e.  X  <->  x  e.  ( y ( ball `  M ) ( ( 2  x.  s )  /  2 ) ) ) )
3130biimpac 489 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  X  /\  X  =  ( y
( ball `  M )
( ( 2  x.  s )  /  2
) ) )  ->  x  e.  ( y
( ball `  M )
( ( 2  x.  s )  /  2
) ) )
32 2re 10676 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  RR
33 rpre 11305 . . . . . . . . . . . . . . . . . . 19  |-  ( s  e.  RR+  ->  s  e.  RR )
34 remulcl 9621 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  e.  RR  /\  s  e.  RR )  ->  ( 2  x.  s
)  e.  RR )
3532, 33, 34sylancr 668 . . . . . . . . . . . . . . . . . 18  |-  ( s  e.  RR+  ->  ( 2  x.  s )  e.  RR )
36 blhalf 21413 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  ( *Met `  X
)  /\  y  e.  X )  /\  (
( 2  x.  s
)  e.  RR  /\  x  e.  ( y
( ball `  M )
( ( 2  x.  s )  /  2
) ) ) )  ->  ( y (
ball `  M )
( ( 2  x.  s )  /  2
) )  C_  (
x ( ball `  M
) ( 2  x.  s ) ) )
3736expr 619 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  ( *Met `  X
)  /\  y  e.  X )  /\  (
2  x.  s )  e.  RR )  -> 
( x  e.  ( y ( ball `  M
) ( ( 2  x.  s )  / 
2 ) )  -> 
( y ( ball `  M ) ( ( 2  x.  s )  /  2 ) ) 
C_  ( x (
ball `  M )
( 2  x.  s
) ) ) )
3835, 37sylan2 477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  ( *Met `  X
)  /\  y  e.  X )  /\  s  e.  RR+ )  ->  (
x  e.  ( y ( ball `  M
) ( ( 2  x.  s )  / 
2 ) )  -> 
( y ( ball `  M ) ( ( 2  x.  s )  /  2 ) ) 
C_  ( x (
ball `  M )
( 2  x.  s
) ) ) )
3938anasss 652 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  ( *Met `  X )  /\  ( y  e.  X  /\  s  e.  RR+ ) )  ->  (
x  e.  ( y ( ball `  M
) ( ( 2  x.  s )  / 
2 ) )  -> 
( y ( ball `  M ) ( ( 2  x.  s )  /  2 ) ) 
C_  ( x (
ball `  M )
( 2  x.  s
) ) ) )
4039imp 431 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  ( *Met `  X
)  /\  ( y  e.  X  /\  s  e.  RR+ ) )  /\  x  e.  ( y
( ball `  M )
( ( 2  x.  s )  /  2
) ) )  -> 
( y ( ball `  M ) ( ( 2  x.  s )  /  2 ) ) 
C_  ( x (
ball `  M )
( 2  x.  s
) ) )
4131, 40sylan2 477 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ( *Met `  X
)  /\  ( y  e.  X  /\  s  e.  RR+ ) )  /\  ( x  e.  X  /\  X  =  (
y ( ball `  M
) ( ( 2  x.  s )  / 
2 ) ) ) )  ->  ( y
( ball `  M )
( ( 2  x.  s )  /  2
) )  C_  (
x ( ball `  M
) ( 2  x.  s ) ) )
4241anassrs 653 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  (
y  e.  X  /\  s  e.  RR+ ) )  /\  x  e.  X
)  /\  X  =  ( y ( ball `  M ) ( ( 2  x.  s )  /  2 ) ) )  ->  ( y
( ball `  M )
( ( 2  x.  s )  /  2
) )  C_  (
x ( ball `  M
) ( 2  x.  s ) ) )
4329, 42eqsstrd 3465 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  (
y  e.  X  /\  s  e.  RR+ ) )  /\  x  e.  X
)  /\  X  =  ( y ( ball `  M ) ( ( 2  x.  s )  /  2 ) ) )  ->  X  C_  (
x ( ball `  M
) ( 2  x.  s ) ) )
4428, 43syldan 473 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  (
y  e.  X  /\  s  e.  RR+ ) )  /\  x  e.  X
)  /\  X  =  ( y ( ball `  M ) s ) )  ->  X  C_  (
x ( ball `  M
) ( 2  x.  s ) ) )
4513adantl 468 . . . . . . . . . . . . . 14  |-  ( ( y  e.  X  /\  s  e.  RR+ )  -> 
( 2  x.  s
)  e.  RR+ )
46 rpxr 11306 . . . . . . . . . . . . . . . 16  |-  ( ( 2  x.  s )  e.  RR+  ->  ( 2  x.  s )  e. 
RR* )
47 blssm 21426 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  ( *Met `  X )  /\  x  e.  X  /\  ( 2  x.  s
)  e.  RR* )  ->  ( x ( ball `  M ) ( 2  x.  s ) ) 
C_  X )
4846, 47syl3an3 1302 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ( *Met `  X )  /\  x  e.  X  /\  ( 2  x.  s
)  e.  RR+ )  ->  ( x ( ball `  M ) ( 2  x.  s ) ) 
C_  X )
49483expa 1207 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ( *Met `  X
)  /\  x  e.  X )  /\  (
2  x.  s )  e.  RR+ )  ->  (
x ( ball `  M
) ( 2  x.  s ) )  C_  X )
5045, 49sylan2 477 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( *Met `  X
)  /\  x  e.  X )  /\  (
y  e.  X  /\  s  e.  RR+ ) )  ->  ( x (
ball `  M )
( 2  x.  s
) )  C_  X
)
5150an32s 812 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ( *Met `  X
)  /\  ( y  e.  X  /\  s  e.  RR+ ) )  /\  x  e.  X )  ->  ( x ( ball `  M ) ( 2  x.  s ) ) 
C_  X )
5251adantr 467 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  (
y  e.  X  /\  s  e.  RR+ ) )  /\  x  e.  X
)  /\  X  =  ( y ( ball `  M ) s ) )  ->  ( x
( ball `  M )
( 2  x.  s
) )  C_  X
)
5344, 52eqssd 3448 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  (
y  e.  X  /\  s  e.  RR+ ) )  /\  x  e.  X
)  /\  X  =  ( y ( ball `  M ) s ) )  ->  X  =  ( x ( ball `  M ) ( 2  x.  s ) ) )
54 oveq2 6296 . . . . . . . . . . . 12  |-  ( r  =  ( 2  x.  s )  ->  (
x ( ball `  M
) r )  =  ( x ( ball `  M ) ( 2  x.  s ) ) )
5554eqeq2d 2460 . . . . . . . . . . 11  |-  ( r  =  ( 2  x.  s )  ->  ( X  =  ( x
( ball `  M )
r )  <->  X  =  ( x ( ball `  M ) ( 2  x.  s ) ) ) )
5655rspcev 3149 . . . . . . . . . 10  |-  ( ( ( 2  x.  s
)  e.  RR+  /\  X  =  ( x (
ball `  M )
( 2  x.  s
) ) )  ->  E. r  e.  RR+  X  =  ( x ( ball `  M ) r ) )
5715, 53, 56syl2anc 666 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  (
y  e.  X  /\  s  e.  RR+ ) )  /\  x  e.  X
)  /\  X  =  ( y ( ball `  M ) s ) )  ->  E. r  e.  RR+  X  =  ( x ( ball `  M
) r ) )
5857ex 436 . . . . . . . 8  |-  ( ( ( M  e.  ( *Met `  X
)  /\  ( y  e.  X  /\  s  e.  RR+ ) )  /\  x  e.  X )  ->  ( X  =  ( y ( ball `  M
) s )  ->  E. r  e.  RR+  X  =  ( x ( ball `  M ) r ) ) )
5958ralrimdva 2805 . . . . . . 7  |-  ( ( M  e.  ( *Met `  X )  /\  ( y  e.  X  /\  s  e.  RR+ ) )  ->  ( X  =  ( y
( ball `  M )
s )  ->  A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M
) r ) ) )
6059rexlimdvva 2885 . . . . . 6  |-  ( M  e.  ( *Met `  X )  ->  ( E. y  e.  X  E. s  e.  RR+  X  =  ( y ( ball `  M ) s )  ->  A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r ) ) )
6110, 60syl5bi 221 . . . . 5  |-  ( M  e.  ( *Met `  X )  ->  ( E. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  ->  A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r ) ) )
62 rexn0 3871 . . . . . 6  |-  ( E. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  ->  X  =/=  (/) )
6362a1i 11 . . . . 5  |-  ( M  e.  ( *Met `  X )  ->  ( E. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  ->  X  =/=  (/) ) )
6461, 63jcad 536 . . . 4  |-  ( M  e.  ( *Met `  X )  ->  ( E. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  ->  ( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M
) r )  /\  X  =/=  (/) ) ) )
655, 64impbid2 208 . . 3  |-  ( M  e.  ( *Met `  X )  ->  (
( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M
) r )  /\  X  =/=  (/) )  <->  E. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M
) r ) ) )
6665pm5.32i 642 . 2  |-  ( ( M  e.  ( *Met `  X )  /\  ( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M
) r )  /\  X  =/=  (/) ) )  <->  ( M  e.  ( *Met `  X )  /\  E. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r ) ) )
672, 3, 663bitri 275 1  |-  ( ( M  e.  ( Bnd `  X )  /\  X  =/=  (/) )  <->  ( M  e.  ( *Met `  X )  /\  E. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 984    = wceq 1443    e. wcel 1886    =/= wne 2621   A.wral 2736   E.wrex 2737    C_ wss 3403   (/)c0 3730   ` cfv 5581  (class class class)co 6288   CCcc 9534   RRcr 9535   0cc0 9536    x. cmul 9541   RR*cxr 9671    / cdiv 10266   2c2 10656   RR+crp 11299   *Metcxmt 18948   ballcbl 18950   Bndcbnd 32092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-op 3974  df-uni 4198  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-id 4748  df-po 4754  df-so 4755  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-1st 6790  df-2nd 6791  df-er 7360  df-ec 7362  df-map 7471  df-en 7567  df-dom 7568  df-sdom 7569  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-div 10267  df-2 10665  df-rp 11300  df-xneg 11406  df-xadd 11407  df-xmul 11408  df-psmet 18955  df-xmet 18956  df-met 18957  df-bl 18958  df-bnd 32104
This theorem is referenced by:  isbnd3  32109  blbnd  32112  ssbnd  32113
  Copyright terms: Public domain W3C validator