MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isblo3i Unicode version

Theorem isblo3i 22255
Description: The predicate "is a bounded linear operator." Definition 2.7-1 of [Kreyszig] p. 91. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
isblo3i.1  |-  X  =  ( BaseSet `  U )
isblo3i.m  |-  M  =  ( normCV `  U )
isblo3i.n  |-  N  =  ( normCV `  W )
isblo3i.4  |-  L  =  ( U  LnOp  W
)
isblo3i.5  |-  B  =  ( U  BLnOp  W )
isblo3i.u  |-  U  e.  NrmCVec
isblo3i.w  |-  W  e.  NrmCVec
Assertion
Ref Expression
isblo3i  |-  ( T  e.  B  <->  ( T  e.  L  /\  E. x  e.  RR  A. y  e.  X  ( N `  ( T `  y ) )  <_  ( x  x.  ( M `  y
) ) ) )
Distinct variable groups:    x, y, B    x, L    x, M, y    x, N, y    x, T, y    x, U, y   
x, W, y    x, X, y
Allowed substitution hint:    L( y)

Proof of Theorem isblo3i
StepHypRef Expression
1 isblo3i.u . . . 4  |-  U  e.  NrmCVec
2 isblo3i.w . . . 4  |-  W  e.  NrmCVec
3 isblo3i.4 . . . . 5  |-  L  =  ( U  LnOp  W
)
4 isblo3i.5 . . . . 5  |-  B  =  ( U  BLnOp  W )
53, 4bloln 22238 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  B )  ->  T  e.  L )
61, 2, 5mp3an12 1269 . . 3  |-  ( T  e.  B  ->  T  e.  L )
7 isblo3i.1 . . . . . 6  |-  X  =  ( BaseSet `  U )
8 eqid 2404 . . . . . 6  |-  ( BaseSet `  W )  =  (
BaseSet `  W )
9 eqid 2404 . . . . . 6  |-  ( U
normOp OLD W )  =  ( U normOp OLD W
)
107, 8, 9, 4nmblore 22240 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  B )  ->  (
( U normOp OLD W
) `  T )  e.  RR )
111, 2, 10mp3an12 1269 . . . 4  |-  ( T  e.  B  ->  (
( U normOp OLD W
) `  T )  e.  RR )
12 isblo3i.m . . . . . 6  |-  M  =  ( normCV `  U )
13 isblo3i.n . . . . . 6  |-  N  =  ( normCV `  W )
147, 12, 13, 9, 4, 1, 2nmblolbi 22254 . . . . 5  |-  ( ( T  e.  B  /\  y  e.  X )  ->  ( N `  ( T `  y )
)  <_  ( (
( U normOp OLD W
) `  T )  x.  ( M `  y
) ) )
1514ralrimiva 2749 . . . 4  |-  ( T  e.  B  ->  A. y  e.  X  ( N `  ( T `  y
) )  <_  (
( ( U normOp OLD W ) `  T
)  x.  ( M `
 y ) ) )
16 oveq1 6047 . . . . . . 7  |-  ( x  =  ( ( U
normOp OLD W ) `  T )  ->  (
x  x.  ( M `
 y ) )  =  ( ( ( U normOp OLD W ) `  T )  x.  ( M `  y )
) )
1716breq2d 4184 . . . . . 6  |-  ( x  =  ( ( U
normOp OLD W ) `  T )  ->  (
( N `  ( T `  y )
)  <_  ( x  x.  ( M `  y
) )  <->  ( N `  ( T `  y
) )  <_  (
( ( U normOp OLD W ) `  T
)  x.  ( M `
 y ) ) ) )
1817ralbidv 2686 . . . . 5  |-  ( x  =  ( ( U
normOp OLD W ) `  T )  ->  ( A. y  e.  X  ( N `  ( T `
 y ) )  <_  ( x  x.  ( M `  y
) )  <->  A. y  e.  X  ( N `  ( T `  y
) )  <_  (
( ( U normOp OLD W ) `  T
)  x.  ( M `
 y ) ) ) )
1918rspcev 3012 . . . 4  |-  ( ( ( ( U normOp OLD W ) `  T
)  e.  RR  /\  A. y  e.  X  ( N `  ( T `
 y ) )  <_  ( ( ( U normOp OLD W ) `  T )  x.  ( M `  y )
) )  ->  E. x  e.  RR  A. y  e.  X  ( N `  ( T `  y ) )  <_  ( x  x.  ( M `  y
) ) )
2011, 15, 19syl2anc 643 . . 3  |-  ( T  e.  B  ->  E. x  e.  RR  A. y  e.  X  ( N `  ( T `  y ) )  <_  ( x  x.  ( M `  y
) ) )
216, 20jca 519 . 2  |-  ( T  e.  B  ->  ( T  e.  L  /\  E. x  e.  RR  A. y  e.  X  ( N `  ( T `  y ) )  <_ 
( x  x.  ( M `  y )
) ) )
22 simp1 957 . . . . 5  |-  ( ( T  e.  L  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y ) )  <_ 
( x  x.  ( M `  y )
) )  ->  T  e.  L )
237, 8, 3lnof 22209 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  T : X --> ( BaseSet `  W
) )
241, 2, 23mp3an12 1269 . . . . . 6  |-  ( T  e.  L  ->  T : X --> ( BaseSet `  W
) )
257, 8, 9nmoxr 22220 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> ( BaseSet `  W )
)  ->  ( ( U normOp OLD W ) `  T )  e.  RR* )
261, 2, 25mp3an12 1269 . . . . . . . 8  |-  ( T : X --> ( BaseSet `  W )  ->  (
( U normOp OLD W
) `  T )  e.  RR* )
27263ad2ant1 978 . . . . . . 7  |-  ( ( T : X --> ( BaseSet `  W )  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y
) )  <_  (
x  x.  ( M `
 y ) ) )  ->  ( ( U normOp OLD W ) `  T )  e.  RR* )
28 recn 9036 . . . . . . . . . 10  |-  ( x  e.  RR  ->  x  e.  CC )
2928abscld 12193 . . . . . . . . 9  |-  ( x  e.  RR  ->  ( abs `  x )  e.  RR )
3029rexrd 9090 . . . . . . . 8  |-  ( x  e.  RR  ->  ( abs `  x )  e. 
RR* )
31303ad2ant2 979 . . . . . . 7  |-  ( ( T : X --> ( BaseSet `  W )  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y
) )  <_  (
x  x.  ( M `
 y ) ) )  ->  ( abs `  x )  e.  RR* )
32 pnfxr 10669 . . . . . . . 8  |-  +oo  e.  RR*
3332a1i 11 . . . . . . 7  |-  ( ( T : X --> ( BaseSet `  W )  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y
) )  <_  (
x  x.  ( M `
 y ) ) )  ->  +oo  e.  RR* )
347, 8, 12, 13, 9, 1, 2nmoub3i 22227 . . . . . . 7  |-  ( ( T : X --> ( BaseSet `  W )  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y
) )  <_  (
x  x.  ( M `
 y ) ) )  ->  ( ( U normOp OLD W ) `  T )  <_  ( abs `  x ) )
35 ltpnf 10677 . . . . . . . . 9  |-  ( ( abs `  x )  e.  RR  ->  ( abs `  x )  <  +oo )
3629, 35syl 16 . . . . . . . 8  |-  ( x  e.  RR  ->  ( abs `  x )  <  +oo )
37363ad2ant2 979 . . . . . . 7  |-  ( ( T : X --> ( BaseSet `  W )  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y
) )  <_  (
x  x.  ( M `
 y ) ) )  ->  ( abs `  x )  <  +oo )
3827, 31, 33, 34, 37xrlelttrd 10706 . . . . . 6  |-  ( ( T : X --> ( BaseSet `  W )  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y
) )  <_  (
x  x.  ( M `
 y ) ) )  ->  ( ( U normOp OLD W ) `  T )  <  +oo )
3924, 38syl3an1 1217 . . . . 5  |-  ( ( T  e.  L  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y ) )  <_ 
( x  x.  ( M `  y )
) )  ->  (
( U normOp OLD W
) `  T )  <  +oo )
409, 3, 4isblo 22236 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( T  e.  B  <->  ( T  e.  L  /\  (
( U normOp OLD W
) `  T )  <  +oo ) ) )
411, 2, 40mp2an 654 . . . . 5  |-  ( T  e.  B  <->  ( T  e.  L  /\  (
( U normOp OLD W
) `  T )  <  +oo ) )
4222, 39, 41sylanbrc 646 . . . 4  |-  ( ( T  e.  L  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y ) )  <_ 
( x  x.  ( M `  y )
) )  ->  T  e.  B )
4342rexlimdv3a 2792 . . 3  |-  ( T  e.  L  ->  ( E. x  e.  RR  A. y  e.  X  ( N `  ( T `
 y ) )  <_  ( x  x.  ( M `  y
) )  ->  T  e.  B ) )
4443imp 419 . 2  |-  ( ( T  e.  L  /\  E. x  e.  RR  A. y  e.  X  ( N `  ( T `  y ) )  <_ 
( x  x.  ( M `  y )
) )  ->  T  e.  B )
4521, 44impbii 181 1  |-  ( T  e.  B  <->  ( T  e.  L  /\  E. x  e.  RR  A. y  e.  X  ( N `  ( T `  y ) )  <_  ( x  x.  ( M `  y
) ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667   class class class wbr 4172   -->wf 5409   ` cfv 5413  (class class class)co 6040   RRcr 8945    x. cmul 8951    +oocpnf 9073   RR*cxr 9075    < clt 9076    <_ cle 9077   abscabs 11994   NrmCVeccnv 22016   BaseSetcba 22018   normCVcnmcv 22022    LnOp clno 22194   normOp OLDcnmoo 22195    BLnOp cblo 22196
This theorem is referenced by:  blo3i  22256  blocnilem  22258
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-seq 11279  df-exp 11338  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-grpo 21732  df-gid 21733  df-ginv 21734  df-ablo 21823  df-vc 21978  df-nv 22024  df-va 22027  df-ba 22028  df-sm 22029  df-0v 22030  df-nmcv 22032  df-lno 22198  df-nmoo 22199  df-blo 22200  df-0o 22201
  Copyright terms: Public domain W3C validator