MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isblo3i Structured version   Unicode version

Theorem isblo3i 26434
Description: The predicate "is a bounded linear operator." Definition 2.7-1 of [Kreyszig] p. 91. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
isblo3i.1  |-  X  =  ( BaseSet `  U )
isblo3i.m  |-  M  =  ( normCV `  U )
isblo3i.n  |-  N  =  ( normCV `  W )
isblo3i.4  |-  L  =  ( U  LnOp  W
)
isblo3i.5  |-  B  =  ( U  BLnOp  W )
isblo3i.u  |-  U  e.  NrmCVec
isblo3i.w  |-  W  e.  NrmCVec
Assertion
Ref Expression
isblo3i  |-  ( T  e.  B  <->  ( T  e.  L  /\  E. x  e.  RR  A. y  e.  X  ( N `  ( T `  y ) )  <_  ( x  x.  ( M `  y
) ) ) )
Distinct variable groups:    x, y, B    x, L    x, M, y    x, N, y    x, T, y    x, U, y   
x, W, y    x, X, y
Allowed substitution hint:    L( y)

Proof of Theorem isblo3i
StepHypRef Expression
1 isblo3i.u . . . 4  |-  U  e.  NrmCVec
2 isblo3i.w . . . 4  |-  W  e.  NrmCVec
3 isblo3i.4 . . . . 5  |-  L  =  ( U  LnOp  W
)
4 isblo3i.5 . . . . 5  |-  B  =  ( U  BLnOp  W )
53, 4bloln 26417 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  B )  ->  T  e.  L )
61, 2, 5mp3an12 1351 . . 3  |-  ( T  e.  B  ->  T  e.  L )
7 isblo3i.1 . . . . . 6  |-  X  =  ( BaseSet `  U )
8 eqid 2423 . . . . . 6  |-  ( BaseSet `  W )  =  (
BaseSet `  W )
9 eqid 2423 . . . . . 6  |-  ( U
normOpOLD W )  =  ( U normOpOLD W
)
107, 8, 9, 4nmblore 26419 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  B )  ->  (
( U normOpOLD W
) `  T )  e.  RR )
111, 2, 10mp3an12 1351 . . . 4  |-  ( T  e.  B  ->  (
( U normOpOLD W
) `  T )  e.  RR )
12 isblo3i.m . . . . . 6  |-  M  =  ( normCV `  U )
13 isblo3i.n . . . . . 6  |-  N  =  ( normCV `  W )
147, 12, 13, 9, 4, 1, 2nmblolbi 26433 . . . . 5  |-  ( ( T  e.  B  /\  y  e.  X )  ->  ( N `  ( T `  y )
)  <_  ( (
( U normOpOLD W
) `  T )  x.  ( M `  y
) ) )
1514ralrimiva 2840 . . . 4  |-  ( T  e.  B  ->  A. y  e.  X  ( N `  ( T `  y
) )  <_  (
( ( U normOpOLD W ) `  T
)  x.  ( M `
 y ) ) )
16 oveq1 6310 . . . . . . 7  |-  ( x  =  ( ( U
normOpOLD W ) `  T )  ->  (
x  x.  ( M `
 y ) )  =  ( ( ( U normOpOLD W ) `  T )  x.  ( M `  y )
) )
1716breq2d 4433 . . . . . 6  |-  ( x  =  ( ( U
normOpOLD W ) `  T )  ->  (
( N `  ( T `  y )
)  <_  ( x  x.  ( M `  y
) )  <->  ( N `  ( T `  y
) )  <_  (
( ( U normOpOLD W ) `  T
)  x.  ( M `
 y ) ) ) )
1817ralbidv 2865 . . . . 5  |-  ( x  =  ( ( U
normOpOLD W ) `  T )  ->  ( A. y  e.  X  ( N `  ( T `
 y ) )  <_  ( x  x.  ( M `  y
) )  <->  A. y  e.  X  ( N `  ( T `  y
) )  <_  (
( ( U normOpOLD W ) `  T
)  x.  ( M `
 y ) ) ) )
1918rspcev 3183 . . . 4  |-  ( ( ( ( U normOpOLD W ) `  T
)  e.  RR  /\  A. y  e.  X  ( N `  ( T `
 y ) )  <_  ( ( ( U normOpOLD W ) `  T )  x.  ( M `  y )
) )  ->  E. x  e.  RR  A. y  e.  X  ( N `  ( T `  y ) )  <_  ( x  x.  ( M `  y
) ) )
2011, 15, 19syl2anc 666 . . 3  |-  ( T  e.  B  ->  E. x  e.  RR  A. y  e.  X  ( N `  ( T `  y ) )  <_  ( x  x.  ( M `  y
) ) )
216, 20jca 535 . 2  |-  ( T  e.  B  ->  ( T  e.  L  /\  E. x  e.  RR  A. y  e.  X  ( N `  ( T `  y ) )  <_ 
( x  x.  ( M `  y )
) ) )
22 simp1 1006 . . . . 5  |-  ( ( T  e.  L  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y ) )  <_ 
( x  x.  ( M `  y )
) )  ->  T  e.  L )
237, 8, 3lnof 26388 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  T : X --> ( BaseSet `  W
) )
241, 2, 23mp3an12 1351 . . . . . 6  |-  ( T  e.  L  ->  T : X --> ( BaseSet `  W
) )
257, 8, 9nmoxr 26399 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> ( BaseSet `  W )
)  ->  ( ( U normOpOLD W ) `  T )  e.  RR* )
261, 2, 25mp3an12 1351 . . . . . . . 8  |-  ( T : X --> ( BaseSet `  W )  ->  (
( U normOpOLD W
) `  T )  e.  RR* )
27263ad2ant1 1027 . . . . . . 7  |-  ( ( T : X --> ( BaseSet `  W )  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y
) )  <_  (
x  x.  ( M `
 y ) ) )  ->  ( ( U normOpOLD W ) `  T )  e.  RR* )
28 recn 9631 . . . . . . . . . 10  |-  ( x  e.  RR  ->  x  e.  CC )
2928abscld 13491 . . . . . . . . 9  |-  ( x  e.  RR  ->  ( abs `  x )  e.  RR )
3029rexrd 9692 . . . . . . . 8  |-  ( x  e.  RR  ->  ( abs `  x )  e. 
RR* )
31303ad2ant2 1028 . . . . . . 7  |-  ( ( T : X --> ( BaseSet `  W )  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y
) )  <_  (
x  x.  ( M `
 y ) ) )  ->  ( abs `  x )  e.  RR* )
32 pnfxr 11414 . . . . . . . 8  |- +oo  e.  RR*
3332a1i 11 . . . . . . 7  |-  ( ( T : X --> ( BaseSet `  W )  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y
) )  <_  (
x  x.  ( M `
 y ) ) )  -> +oo  e.  RR* )
347, 8, 12, 13, 9, 1, 2nmoub3i 26406 . . . . . . 7  |-  ( ( T : X --> ( BaseSet `  W )  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y
) )  <_  (
x  x.  ( M `
 y ) ) )  ->  ( ( U normOpOLD W ) `  T )  <_  ( abs `  x ) )
35 ltpnf 11424 . . . . . . . . 9  |-  ( ( abs `  x )  e.  RR  ->  ( abs `  x )  < +oo )
3629, 35syl 17 . . . . . . . 8  |-  ( x  e.  RR  ->  ( abs `  x )  < +oo )
37363ad2ant2 1028 . . . . . . 7  |-  ( ( T : X --> ( BaseSet `  W )  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y
) )  <_  (
x  x.  ( M `
 y ) ) )  ->  ( abs `  x )  < +oo )
3827, 31, 33, 34, 37xrlelttrd 11459 . . . . . 6  |-  ( ( T : X --> ( BaseSet `  W )  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y
) )  <_  (
x  x.  ( M `
 y ) ) )  ->  ( ( U normOpOLD W ) `  T )  < +oo )
3924, 38syl3an1 1298 . . . . 5  |-  ( ( T  e.  L  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y ) )  <_ 
( x  x.  ( M `  y )
) )  ->  (
( U normOpOLD W
) `  T )  < +oo )
409, 3, 4isblo 26415 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( T  e.  B  <->  ( T  e.  L  /\  (
( U normOpOLD W
) `  T )  < +oo ) ) )
411, 2, 40mp2an 677 . . . . 5  |-  ( T  e.  B  <->  ( T  e.  L  /\  (
( U normOpOLD W
) `  T )  < +oo ) )
4222, 39, 41sylanbrc 669 . . . 4  |-  ( ( T  e.  L  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y ) )  <_ 
( x  x.  ( M `  y )
) )  ->  T  e.  B )
4342rexlimdv3a 2920 . . 3  |-  ( T  e.  L  ->  ( E. x  e.  RR  A. y  e.  X  ( N `  ( T `
 y ) )  <_  ( x  x.  ( M `  y
) )  ->  T  e.  B ) )
4443imp 431 . 2  |-  ( ( T  e.  L  /\  E. x  e.  RR  A. y  e.  X  ( N `  ( T `  y ) )  <_ 
( x  x.  ( M `  y )
) )  ->  T  e.  B )
4521, 44impbii 191 1  |-  ( T  e.  B  <->  ( T  e.  L  /\  E. x  e.  RR  A. y  e.  X  ( N `  ( T `  y ) )  <_  ( x  x.  ( M `  y
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 188    /\ wa 371    /\ w3a 983    = wceq 1438    e. wcel 1869   A.wral 2776   E.wrex 2777   class class class wbr 4421   -->wf 5595   ` cfv 5599  (class class class)co 6303   RRcr 9540    x. cmul 9546   +oocpnf 9674   RR*cxr 9676    < clt 9677    <_ cle 9678   abscabs 13291   NrmCVeccnv 26195   BaseSetcba 26197   normCVcnmcv 26201    LnOp clno 26373   normOpOLDcnmoo 26374    BLnOp cblo 26375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618  ax-pre-sup 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-om 6705  df-1st 6805  df-2nd 6806  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-er 7369  df-map 7480  df-en 7576  df-dom 7577  df-sdom 7578  df-sup 7960  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-div 10272  df-nn 10612  df-2 10670  df-3 10671  df-n0 10872  df-z 10940  df-uz 11162  df-rp 11305  df-seq 12215  df-exp 12274  df-cj 13156  df-re 13157  df-im 13158  df-sqrt 13292  df-abs 13293  df-grpo 25911  df-gid 25912  df-ginv 25913  df-ablo 26002  df-vc 26157  df-nv 26203  df-va 26206  df-ba 26207  df-sm 26208  df-0v 26209  df-nmcv 26211  df-lno 26377  df-nmoo 26378  df-blo 26379  df-0o 26380
This theorem is referenced by:  blo3i  26435  blocnilem  26437
  Copyright terms: Public domain W3C validator