MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isblo Structured version   Unicode version

Theorem isblo 26406
Description: The predicate "is a bounded linear operator." (Contributed by NM, 6-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
bloval.3  |-  N  =  ( U normOpOLD W
)
bloval.4  |-  L  =  ( U  LnOp  W
)
bloval.5  |-  B  =  ( U  BLnOp  W )
Assertion
Ref Expression
isblo  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( T  e.  B  <->  ( T  e.  L  /\  ( N `  T )  < +oo ) ) )

Proof of Theorem isblo
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 bloval.3 . . . 4  |-  N  =  ( U normOpOLD W
)
2 bloval.4 . . . 4  |-  L  =  ( U  LnOp  W
)
3 bloval.5 . . . 4  |-  B  =  ( U  BLnOp  W )
41, 2, 3bloval 26405 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  B  =  { t  e.  L  |  ( N `  t )  < +oo } )
54eleq2d 2492 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( T  e.  B  <->  T  e.  { t  e.  L  | 
( N `  t
)  < +oo } ) )
6 fveq2 5877 . . . 4  |-  ( t  =  T  ->  ( N `  t )  =  ( N `  T ) )
76breq1d 4430 . . 3  |-  ( t  =  T  ->  (
( N `  t
)  < +oo  <->  ( N `  T )  < +oo ) )
87elrab 3229 . 2  |-  ( T  e.  { t  e.  L  |  ( N `
 t )  < +oo }  <->  ( T  e.  L  /\  ( N `
 T )  < +oo ) )
95, 8syl6bb 264 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( T  e.  B  <->  ( T  e.  L  /\  ( N `  T )  < +oo ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1868   {crab 2779   class class class wbr 4420   ` cfv 5597  (class class class)co 6301   +oocpnf 9672    < clt 9675   NrmCVeccnv 26186    LnOp clno 26364   normOpOLDcnmoo 26365    BLnOp cblo 26366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4551  ax-pr 4656
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-rab 2784  df-v 3083  df-sbc 3300  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-br 4421  df-opab 4480  df-id 4764  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-iota 5561  df-fun 5599  df-fv 5605  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-blo 26370
This theorem is referenced by:  isblo2  26407  bloln  26408  nmblore  26410  isblo3i  26425  htthlem  26553
  Copyright terms: Public domain W3C validator