MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isbasis2g Structured version   Unicode version

Theorem isbasis2g 19211
Description: Express the predicate " B is a basis for a topology." (Contributed by NM, 17-Jul-2006.)
Assertion
Ref Expression
isbasis2g  |-  ( B  e.  C  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) )
Distinct variable group:    x, w, y, z, B
Allowed substitution hints:    C( x, y, z, w)

Proof of Theorem isbasis2g
StepHypRef Expression
1 isbasisg 19210 . 2  |-  ( B  e.  C  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) ) )
2 dfss3 3489 . . . 4  |-  ( ( x  i^i  y ) 
C_  U. ( B  i^i  ~P ( x  i^i  y
) )  <->  A. z  e.  ( x  i^i  y
) z  e.  U. ( B  i^i  ~P (
x  i^i  y )
) )
3 elin 3682 . . . . . . . . . 10  |-  ( w  e.  ( B  i^i  ~P ( x  i^i  y
) )  <->  ( w  e.  B  /\  w  e.  ~P ( x  i^i  y ) ) )
4 selpw 4012 . . . . . . . . . . 11  |-  ( w  e.  ~P ( x  i^i  y )  <->  w  C_  (
x  i^i  y )
)
54anbi2i 694 . . . . . . . . . 10  |-  ( ( w  e.  B  /\  w  e.  ~P (
x  i^i  y )
)  <->  ( w  e.  B  /\  w  C_  ( x  i^i  y
) ) )
63, 5bitri 249 . . . . . . . . 9  |-  ( w  e.  ( B  i^i  ~P ( x  i^i  y
) )  <->  ( w  e.  B  /\  w  C_  ( x  i^i  y
) ) )
76anbi2i 694 . . . . . . . 8  |-  ( ( z  e.  w  /\  w  e.  ( B  i^i  ~P ( x  i^i  y ) ) )  <-> 
( z  e.  w  /\  ( w  e.  B  /\  w  C_  ( x  i^i  y ) ) ) )
8 an12 795 . . . . . . . 8  |-  ( ( z  e.  w  /\  ( w  e.  B  /\  w  C_  ( x  i^i  y ) ) )  <->  ( w  e.  B  /\  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) ) )
97, 8bitri 249 . . . . . . 7  |-  ( ( z  e.  w  /\  w  e.  ( B  i^i  ~P ( x  i^i  y ) ) )  <-> 
( w  e.  B  /\  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) )
109exbii 1639 . . . . . 6  |-  ( E. w ( z  e.  w  /\  w  e.  ( B  i^i  ~P ( x  i^i  y
) ) )  <->  E. w
( w  e.  B  /\  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) )
11 eluni 4243 . . . . . 6  |-  ( z  e.  U. ( B  i^i  ~P ( x  i^i  y ) )  <->  E. w ( z  e.  w  /\  w  e.  ( B  i^i  ~P ( x  i^i  y
) ) ) )
12 df-rex 2815 . . . . . 6  |-  ( E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) )  <->  E. w
( w  e.  B  /\  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) )
1310, 11, 123bitr4i 277 . . . . 5  |-  ( z  e.  U. ( B  i^i  ~P ( x  i^i  y ) )  <->  E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) )
1413ralbii 2890 . . . 4  |-  ( A. z  e.  ( x  i^i  y ) z  e. 
U. ( B  i^i  ~P ( x  i^i  y
) )  <->  A. z  e.  ( x  i^i  y
) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) )
152, 14bitri 249 . . 3  |-  ( ( x  i^i  y ) 
C_  U. ( B  i^i  ~P ( x  i^i  y
) )  <->  A. z  e.  ( x  i^i  y
) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) )
16152ralbii 2891 . 2  |-  ( A. x  e.  B  A. y  e.  B  (
x  i^i  y )  C_ 
U. ( B  i^i  ~P ( x  i^i  y
) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  ( x  i^i  y
) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) )
171, 16syl6bb 261 1  |-  ( B  e.  C  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   E.wex 1591    e. wcel 1762   A.wral 2809   E.wrex 2810    i^i cin 3470    C_ wss 3471   ~Pcpw 4005   U.cuni 4240   TopBasesctb 19160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ral 2814  df-rex 2815  df-v 3110  df-in 3478  df-ss 3485  df-pw 4007  df-uni 4241  df-bases 19163
This theorem is referenced by:  isbasis3g  19212  basis2  19214  fiinbas  19215  tgclb  19233  topbas  19235  restbas  19420  txbas  19798  blbas  20663
  Copyright terms: Public domain W3C validator