Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isarchiofld Structured version   Unicode version

Theorem isarchiofld 28582
Description: Axiom of Archimedes : a characterization of the Archimedean property for ordered fields. (Contributed by Thierry Arnoux, 9-Apr-2018.)
Hypotheses
Ref Expression
isarchiofld.b  |-  B  =  ( Base `  W
)
isarchiofld.h  |-  H  =  ( ZRHom `  W
)
isarchiofld.l  |-  .<  =  ( lt `  W )
Assertion
Ref Expression
isarchiofld  |-  ( W  e. oField  ->  ( W  e. Archi  <->  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n
) ) )
Distinct variable groups:    x, n, B    n, W, x    x, H    .< , n, x
Allowed substitution hint:    H( n)

Proof of Theorem isarchiofld
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isofld 28567 . . . 4  |-  ( W  e. oField 
<->  ( W  e. Field  /\  W  e. oRing ) )
21simprbi 466 . . 3  |-  ( W  e. oField  ->  W  e. oRing )
3 orngogrp 28566 . . 3  |-  ( W  e. oRing  ->  W  e. oGrp )
4 isarchiofld.b . . . 4  |-  B  =  ( Base `  W
)
5 eqid 2423 . . . 4  |-  ( 0g
`  W )  =  ( 0g `  W
)
6 isarchiofld.l . . . 4  |-  .<  =  ( lt `  W )
7 eqid 2423 . . . 4  |-  (.g `  W
)  =  (.g `  W
)
84, 5, 6, 7isarchi3 28505 . . 3  |-  ( W  e. oGrp  ->  ( W  e. Archi  <->  A. y  e.  B  A. x  e.  B  (
( 0g `  W
)  .<  y  ->  E. n  e.  NN  x  .<  (
n (.g `  W ) y ) ) ) )
92, 3, 83syl 18 . 2  |-  ( W  e. oField  ->  ( W  e. Archi  <->  A. y  e.  B  A. x  e.  B  (
( 0g `  W
)  .<  y  ->  E. n  e.  NN  x  .<  (
n (.g `  W ) y ) ) ) )
10 orngring 28565 . . . . . . 7  |-  ( W  e. oRing  ->  W  e.  Ring )
11 eqid 2423 . . . . . . . 8  |-  ( 1r
`  W )  =  ( 1r `  W
)
124, 11ringidcl 17794 . . . . . . 7  |-  ( W  e.  Ring  ->  ( 1r
`  W )  e.  B )
132, 10, 123syl 18 . . . . . 6  |-  ( W  e. oField  ->  ( 1r `  W )  e.  B
)
14 breq2 4425 . . . . . . . . 9  |-  ( y  =  ( 1r `  W )  ->  (
( 0g `  W
)  .<  y  <->  ( 0g `  W )  .<  ( 1r `  W ) ) )
15 oveq2 6311 . . . . . . . . . . 11  |-  ( y  =  ( 1r `  W )  ->  (
n (.g `  W ) y )  =  ( n (.g `  W ) ( 1r `  W ) ) )
1615breq2d 4433 . . . . . . . . . 10  |-  ( y  =  ( 1r `  W )  ->  (
x  .<  ( n (.g `  W ) y )  <-> 
x  .<  ( n (.g `  W ) ( 1r
`  W ) ) ) )
1716rexbidv 2940 . . . . . . . . 9  |-  ( y  =  ( 1r `  W )  ->  ( E. n  e.  NN  x  .<  ( n (.g `  W ) y )  <->  E. n  e.  NN  x  .<  ( n (.g `  W ) ( 1r
`  W ) ) ) )
1814, 17imbi12d 322 . . . . . . . 8  |-  ( y  =  ( 1r `  W )  ->  (
( ( 0g `  W )  .<  y  ->  E. n  e.  NN  x  .<  ( n (.g `  W ) y ) )  <->  ( ( 0g
`  W )  .< 
( 1r `  W
)  ->  E. n  e.  NN  x  .<  (
n (.g `  W ) ( 1r `  W ) ) ) ) )
1918ralbidv 2865 . . . . . . 7  |-  ( y  =  ( 1r `  W )  ->  ( A. x  e.  B  ( ( 0g `  W )  .<  y  ->  E. n  e.  NN  x  .<  ( n (.g `  W ) y ) )  <->  A. x  e.  B  ( ( 0g `  W )  .<  ( 1r `  W )  ->  E. n  e.  NN  x  .<  ( n (.g `  W ) ( 1r
`  W ) ) ) ) )
2019rspcv 3179 . . . . . 6  |-  ( ( 1r `  W )  e.  B  ->  ( A. y  e.  B  A. x  e.  B  ( ( 0g `  W )  .<  y  ->  E. n  e.  NN  x  .<  ( n (.g `  W ) y ) )  ->  A. x  e.  B  ( ( 0g `  W )  .< 
( 1r `  W
)  ->  E. n  e.  NN  x  .<  (
n (.g `  W ) ( 1r `  W ) ) ) ) )
2113, 20syl 17 . . . . 5  |-  ( W  e. oField  ->  ( A. y  e.  B  A. x  e.  B  ( ( 0g `  W )  .< 
y  ->  E. n  e.  NN  x  .<  (
n (.g `  W ) y ) )  ->  A. x  e.  B  ( ( 0g `  W )  .< 
( 1r `  W
)  ->  E. n  e.  NN  x  .<  (
n (.g `  W ) ( 1r `  W ) ) ) ) )
225, 11, 6ofldlt1 28578 . . . . . . 7  |-  ( W  e. oField  ->  ( 0g `  W )  .<  ( 1r `  W ) )
23 pm5.5 338 . . . . . . 7  |-  ( ( 0g `  W ) 
.<  ( 1r `  W
)  ->  ( (
( 0g `  W
)  .<  ( 1r `  W )  ->  E. n  e.  NN  x  .<  (
n (.g `  W ) ( 1r `  W ) ) )  <->  E. n  e.  NN  x  .<  (
n (.g `  W ) ( 1r `  W ) ) ) )
2422, 23syl 17 . . . . . 6  |-  ( W  e. oField  ->  ( ( ( 0g `  W ) 
.<  ( 1r `  W
)  ->  E. n  e.  NN  x  .<  (
n (.g `  W ) ( 1r `  W ) ) )  <->  E. n  e.  NN  x  .<  (
n (.g `  W ) ( 1r `  W ) ) ) )
2524ralbidv 2865 . . . . 5  |-  ( W  e. oField  ->  ( A. x  e.  B  ( ( 0g `  W )  .< 
( 1r `  W
)  ->  E. n  e.  NN  x  .<  (
n (.g `  W ) ( 1r `  W ) ) )  <->  A. x  e.  B  E. n  e.  NN  x  .<  (
n (.g `  W ) ( 1r `  W ) ) ) )
2621, 25sylibd 218 . . . 4  |-  ( W  e. oField  ->  ( A. y  e.  B  A. x  e.  B  ( ( 0g `  W )  .< 
y  ->  E. n  e.  NN  x  .<  (
n (.g `  W ) y ) )  ->  A. x  e.  B  E. n  e.  NN  x  .<  (
n (.g `  W ) ( 1r `  W ) ) ) )
272, 10syl 17 . . . . . . . 8  |-  ( W  e. oField  ->  W  e.  Ring )
28 nnz 10961 . . . . . . . 8  |-  ( n  e.  NN  ->  n  e.  ZZ )
29 isarchiofld.h . . . . . . . . 9  |-  H  =  ( ZRHom `  W
)
3029, 7, 11zrhmulg 19073 . . . . . . . 8  |-  ( ( W  e.  Ring  /\  n  e.  ZZ )  ->  ( H `  n )  =  ( n (.g `  W ) ( 1r
`  W ) ) )
3127, 28, 30syl2an 480 . . . . . . 7  |-  ( ( W  e. oField  /\  n  e.  NN )  ->  ( H `  n )  =  ( n (.g `  W ) ( 1r
`  W ) ) )
3231breq2d 4433 . . . . . 6  |-  ( ( W  e. oField  /\  n  e.  NN )  ->  (
x  .<  ( H `  n )  <->  x  .<  ( n (.g `  W ) ( 1r `  W ) ) ) )
3332rexbidva 2937 . . . . 5  |-  ( W  e. oField  ->  ( E. n  e.  NN  x  .<  ( H `  n )  <->  E. n  e.  NN  x  .<  ( n (.g `  W
) ( 1r `  W ) ) ) )
3433ralbidv 2865 . . . 4  |-  ( W  e. oField  ->  ( A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n )  <->  A. x  e.  B  E. n  e.  NN  x  .<  ( n (.g `  W
) ( 1r `  W ) ) ) )
3526, 34sylibrd 238 . . 3  |-  ( W  e. oField  ->  ( A. y  e.  B  A. x  e.  B  ( ( 0g `  W )  .< 
y  ->  E. n  e.  NN  x  .<  (
n (.g `  W ) y ) )  ->  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n )
) )
36 nfv 1752 . . . . . . . 8  |-  F/ x  W  e. oField
37 nfra1 2807 . . . . . . . 8  |-  F/ x A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n )
3836, 37nfan 1985 . . . . . . 7  |-  F/ x
( W  e. oField  /\  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n
) )
39 nfv 1752 . . . . . . 7  |-  F/ x  y  e.  B
4038, 39nfan 1985 . . . . . 6  |-  F/ x
( ( W  e. oField  /\  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n ) )  /\  y  e.  B )
4127ad3antrrr 735 . . . . . . . . . . 11  |-  ( ( ( ( W  e. oField  /\  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n ) )  /\  ( y  e.  B  /\  x  e.  B
) )  /\  ( 0g `  W )  .< 
y )  ->  W  e.  Ring )
42 simplrr 770 . . . . . . . . . . 11  |-  ( ( ( ( W  e. oField  /\  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n ) )  /\  ( y  e.  B  /\  x  e.  B
) )  /\  ( 0g `  W )  .< 
y )  ->  x  e.  B )
43 simplrl 769 . . . . . . . . . . . 12  |-  ( ( ( ( W  e. oField  /\  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n ) )  /\  ( y  e.  B  /\  x  e.  B
) )  /\  ( 0g `  W )  .< 
y )  ->  y  e.  B )
44 simpr 463 . . . . . . . . . . . . . 14  |-  ( ( ( ( W  e. oField  /\  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n ) )  /\  ( y  e.  B  /\  x  e.  B
) )  /\  ( 0g `  W )  .< 
y )  ->  ( 0g `  W )  .< 
y )
45 simplll 767 . . . . . . . . . . . . . . 15  |-  ( ( ( ( W  e. oField  /\  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n ) )  /\  ( y  e.  B  /\  x  e.  B
) )  /\  ( 0g `  W )  .< 
y )  ->  W  e. oField )
46 ringgrp 17778 . . . . . . . . . . . . . . . 16  |-  ( W  e.  Ring  ->  W  e. 
Grp )
474, 5grpidcl 16687 . . . . . . . . . . . . . . . 16  |-  ( W  e.  Grp  ->  ( 0g `  W )  e.  B )
4841, 46, 473syl 18 . . . . . . . . . . . . . . 15  |-  ( ( ( ( W  e. oField  /\  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n ) )  /\  ( y  e.  B  /\  x  e.  B
) )  /\  ( 0g `  W )  .< 
y )  ->  ( 0g `  W )  e.  B )
496pltne 16201 . . . . . . . . . . . . . . 15  |-  ( ( W  e. oField  /\  ( 0g `  W )  e.  B  /\  y  e.  B )  ->  (
( 0g `  W
)  .<  y  ->  ( 0g `  W )  =/=  y ) )
5045, 48, 43, 49syl3anc 1265 . . . . . . . . . . . . . 14  |-  ( ( ( ( W  e. oField  /\  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n ) )  /\  ( y  e.  B  /\  x  e.  B
) )  /\  ( 0g `  W )  .< 
y )  ->  (
( 0g `  W
)  .<  y  ->  ( 0g `  W )  =/=  y ) )
5144, 50mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( ( W  e. oField  /\  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n ) )  /\  ( y  e.  B  /\  x  e.  B
) )  /\  ( 0g `  W )  .< 
y )  ->  ( 0g `  W )  =/=  y )
5251necomd 2696 . . . . . . . . . . . 12  |-  ( ( ( ( W  e. oField  /\  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n ) )  /\  ( y  e.  B  /\  x  e.  B
) )  /\  ( 0g `  W )  .< 
y )  ->  y  =/=  ( 0g `  W
) )
531simplbi 462 . . . . . . . . . . . . . 14  |-  ( W  e. oField  ->  W  e. Field )
54 isfld 17977 . . . . . . . . . . . . . . 15  |-  ( W  e. Field 
<->  ( W  e.  DivRing  /\  W  e.  CRing ) )
5554simplbi 462 . . . . . . . . . . . . . 14  |-  ( W  e. Field  ->  W  e.  DivRing )
5653, 55syl 17 . . . . . . . . . . . . 13  |-  ( W  e. oField  ->  W  e.  DivRing )
57 eqid 2423 . . . . . . . . . . . . . 14  |-  (Unit `  W )  =  (Unit `  W )
584, 57, 5drngunit 17973 . . . . . . . . . . . . 13  |-  ( W  e.  DivRing  ->  ( y  e.  (Unit `  W )  <->  ( y  e.  B  /\  y  =/=  ( 0g `  W ) ) ) )
5945, 56, 583syl 18 . . . . . . . . . . . 12  |-  ( ( ( ( W  e. oField  /\  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n ) )  /\  ( y  e.  B  /\  x  e.  B
) )  /\  ( 0g `  W )  .< 
y )  ->  (
y  e.  (Unit `  W )  <->  ( y  e.  B  /\  y  =/=  ( 0g `  W
) ) ) )
6043, 52, 59mpbir2and 931 . . . . . . . . . . 11  |-  ( ( ( ( W  e. oField  /\  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n ) )  /\  ( y  e.  B  /\  x  e.  B
) )  /\  ( 0g `  W )  .< 
y )  ->  y  e.  (Unit `  W )
)
61 eqid 2423 . . . . . . . . . . . 12  |-  (/r `  W
)  =  (/r `  W
)
624, 57, 61dvrcl 17907 . . . . . . . . . . 11  |-  ( ( W  e.  Ring  /\  x  e.  B  /\  y  e.  (Unit `  W )
)  ->  ( x
(/r `  W ) y )  e.  B )
6341, 42, 60, 62syl3anc 1265 . . . . . . . . . 10  |-  ( ( ( ( W  e. oField  /\  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n ) )  /\  ( y  e.  B  /\  x  e.  B
) )  /\  ( 0g `  W )  .< 
y )  ->  (
x (/r `  W ) y )  e.  B )
64 simpr 463 . . . . . . . . . . . 12  |-  ( ( W  e. oField  /\  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n )
)  ->  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n )
)
65 breq1 4424 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
x  .<  ( H `  n )  <->  z  .<  ( H `  n ) ) )
6665rexbidv 2940 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  ( E. n  e.  NN  x  .<  ( H `  n )  <->  E. n  e.  NN  z  .<  ( H `  n )
) )
6766cbvralv 3056 . . . . . . . . . . . 12  |-  ( A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n
)  <->  A. z  e.  B  E. n  e.  NN  z  .<  ( H `  n ) )
6864, 67sylib 200 . . . . . . . . . . 11  |-  ( ( W  e. oField  /\  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n )
)  ->  A. z  e.  B  E. n  e.  NN  z  .<  ( H `  n )
)
6968ad2antrr 731 . . . . . . . . . 10  |-  ( ( ( ( W  e. oField  /\  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n ) )  /\  ( y  e.  B  /\  x  e.  B
) )  /\  ( 0g `  W )  .< 
y )  ->  A. z  e.  B  E. n  e.  NN  z  .<  ( H `  n )
)
70 breq1 4424 . . . . . . . . . . . 12  |-  ( z  =  ( x (/r `  W ) y )  ->  ( z  .< 
( H `  n
)  <->  ( x (/r `  W ) y ) 
.<  ( H `  n
) ) )
7170rexbidv 2940 . . . . . . . . . . 11  |-  ( z  =  ( x (/r `  W ) y )  ->  ( E. n  e.  NN  z  .<  ( H `  n )  <->  E. n  e.  NN  (
x (/r `  W ) y )  .<  ( H `  n ) ) )
7271rspcv 3179 . . . . . . . . . 10  |-  ( ( x (/r `  W ) y )  e.  B  -> 
( A. z  e.  B  E. n  e.  NN  z  .<  ( H `  n )  ->  E. n  e.  NN  ( x (/r `  W
) y )  .< 
( H `  n
) ) )
7363, 69, 72sylc 63 . . . . . . . . 9  |-  ( ( ( ( W  e. oField  /\  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n ) )  /\  ( y  e.  B  /\  x  e.  B
) )  /\  ( 0g `  W )  .< 
y )  ->  E. n  e.  NN  ( x (/r `  W ) y ) 
.<  ( H `  n
) )
74 eqid 2423 . . . . . . . . . . . . . 14  |-  ( .r
`  W )  =  ( .r `  W
)
75 simp-4l 775 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  ->  W  e. oField )
7675, 2syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  ->  W  e. oRing )
7775, 27syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  ->  W  e.  Ring )
78 simp-4r 776 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  -> 
( y  e.  B  /\  x  e.  B
) )
7978simprd 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  ->  x  e.  B )
8078simpld 461 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  -> 
y  e.  B )
81 simpllr 768 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  -> 
( 0g `  W
)  .<  y )
8277, 46, 473syl 18 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  -> 
( 0g `  W
)  e.  B )
8375, 82, 80, 49syl3anc 1265 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  -> 
( ( 0g `  W )  .<  y  ->  ( 0g `  W
)  =/=  y ) )
8481, 83mpd 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  -> 
( 0g `  W
)  =/=  y )
8584necomd 2696 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  -> 
y  =/=  ( 0g
`  W ) )
8675, 56, 583syl 18 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  -> 
( y  e.  (Unit `  W )  <->  ( y  e.  B  /\  y  =/=  ( 0g `  W
) ) ) )
8780, 85, 86mpbir2and 931 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  -> 
y  e.  (Unit `  W ) )
8877, 79, 87, 62syl3anc 1265 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  -> 
( x (/r `  W
) y )  e.  B )
89 simplr 761 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  ->  n  e.  NN )
9075, 89, 31syl2anc 666 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  -> 
( H `  n
)  =  ( n (.g `  W ) ( 1r `  W ) ) )
9177, 46syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  ->  W  e.  Grp )
9289, 28syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  ->  n  e.  ZZ )
9377, 12syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  -> 
( 1r `  W
)  e.  B )
944, 7mulgcl 16768 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  Grp  /\  n  e.  ZZ  /\  ( 1r `  W )  e.  B )  ->  (
n (.g `  W ) ( 1r `  W ) )  e.  B )
9591, 92, 93, 94syl3anc 1265 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  -> 
( n (.g `  W
) ( 1r `  W ) )  e.  B )
9690, 95eqeltrd 2511 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  -> 
( H `  n
)  e.  B )
9775, 56syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  ->  W  e.  DivRing )
98 simpr 463 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  -> 
( x (/r `  W
) y )  .< 
( H `  n
) )
994, 74, 5, 76, 88, 96, 80, 6, 97, 98, 81orngrmullt 28573 . . . . . . . . . . . . 13  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  -> 
( ( x (/r `  W ) y ) ( .r `  W
) y )  .< 
( ( H `  n ) ( .r
`  W ) y ) )
1004, 57, 61, 74dvrcan1 17912 . . . . . . . . . . . . . 14  |-  ( ( W  e.  Ring  /\  x  e.  B  /\  y  e.  (Unit `  W )
)  ->  ( (
x (/r `  W ) y ) ( .r `  W ) y )  =  x )
10177, 79, 87, 100syl3anc 1265 . . . . . . . . . . . . 13  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  -> 
( ( x (/r `  W ) y ) ( .r `  W
) y )  =  x )
10290oveq1d 6318 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  -> 
( ( H `  n ) ( .r
`  W ) y )  =  ( ( n (.g `  W ) ( 1r `  W ) ) ( .r `  W ) y ) )
1034, 7, 74mulgass2 17822 . . . . . . . . . . . . . . 15  |-  ( ( W  e.  Ring  /\  (
n  e.  ZZ  /\  ( 1r `  W )  e.  B  /\  y  e.  B ) )  -> 
( ( n (.g `  W ) ( 1r
`  W ) ) ( .r `  W
) y )  =  ( n (.g `  W
) ( ( 1r
`  W ) ( .r `  W ) y ) ) )
10477, 92, 93, 80, 103syl13anc 1267 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  -> 
( ( n (.g `  W ) ( 1r
`  W ) ) ( .r `  W
) y )  =  ( n (.g `  W
) ( ( 1r
`  W ) ( .r `  W ) y ) ) )
1054, 74, 11ringlidm 17797 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  Ring  /\  y  e.  B )  ->  (
( 1r `  W
) ( .r `  W ) y )  =  y )
10677, 80, 105syl2anc 666 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  -> 
( ( 1r `  W ) ( .r
`  W ) y )  =  y )
107106oveq2d 6319 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  -> 
( n (.g `  W
) ( ( 1r
`  W ) ( .r `  W ) y ) )  =  ( n (.g `  W
) y ) )
108102, 104, 1073eqtrd 2468 . . . . . . . . . . . . 13  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  -> 
( ( H `  n ) ( .r
`  W ) y )  =  ( n (.g `  W ) y ) )
10999, 101, 1083brtr3d 4451 . . . . . . . . . . . 12  |-  ( ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B ) )  /\  ( 0g `  W ) 
.<  y )  /\  n  e.  NN )  /\  (
x (/r `  W ) y )  .<  ( H `  n ) )  ->  x  .<  ( n (.g `  W ) y ) )
110109ex 436 . . . . . . . . . . 11  |-  ( ( ( ( W  e. oField  /\  ( y  e.  B  /\  x  e.  B
) )  /\  ( 0g `  W )  .< 
y )  /\  n  e.  NN )  ->  (
( x (/r `  W
) y )  .< 
( H `  n
)  ->  x  .<  ( n (.g `  W ) y ) ) )
111110reximdva 2901 . . . . . . . . . 10  |-  ( ( ( W  e. oField  /\  (
y  e.  B  /\  x  e.  B )
)  /\  ( 0g `  W )  .<  y
)  ->  ( E. n  e.  NN  (
x (/r `  W ) y )  .<  ( H `  n )  ->  E. n  e.  NN  x  .<  (
n (.g `  W ) y ) ) )
112111adantllr 724 . . . . . . . . 9  |-  ( ( ( ( W  e. oField  /\  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n ) )  /\  ( y  e.  B  /\  x  e.  B
) )  /\  ( 0g `  W )  .< 
y )  ->  ( E. n  e.  NN  ( x (/r `  W
) y )  .< 
( H `  n
)  ->  E. n  e.  NN  x  .<  (
n (.g `  W ) y ) ) )
11373, 112mpd 15 . . . . . . . 8  |-  ( ( ( ( W  e. oField  /\  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n ) )  /\  ( y  e.  B  /\  x  e.  B
) )  /\  ( 0g `  W )  .< 
y )  ->  E. n  e.  NN  x  .<  (
n (.g `  W ) y ) )
114113ex 436 . . . . . . 7  |-  ( ( ( W  e. oField  /\  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  ( ( 0g `  W )  .< 
y  ->  E. n  e.  NN  x  .<  (
n (.g `  W ) y ) ) )
115114expr 619 . . . . . 6  |-  ( ( ( W  e. oField  /\  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n
) )  /\  y  e.  B )  ->  (
x  e.  B  -> 
( ( 0g `  W )  .<  y  ->  E. n  e.  NN  x  .<  ( n (.g `  W ) y ) ) ) )
11640, 115ralrimi 2826 . . . . 5  |-  ( ( ( W  e. oField  /\  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n
) )  /\  y  e.  B )  ->  A. x  e.  B  ( ( 0g `  W )  .< 
y  ->  E. n  e.  NN  x  .<  (
n (.g `  W ) y ) ) )
117116ralrimiva 2840 . . . 4  |-  ( ( W  e. oField  /\  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n )
)  ->  A. y  e.  B  A. x  e.  B  ( ( 0g `  W )  .< 
y  ->  E. n  e.  NN  x  .<  (
n (.g `  W ) y ) ) )
118117ex 436 . . 3  |-  ( W  e. oField  ->  ( A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n )  ->  A. y  e.  B  A. x  e.  B  ( ( 0g `  W )  .<  y  ->  E. n  e.  NN  x  .<  ( n (.g `  W ) y ) ) ) )
11935, 118impbid 194 . 2  |-  ( W  e. oField  ->  ( A. y  e.  B  A. x  e.  B  ( ( 0g `  W )  .< 
y  ->  E. n  e.  NN  x  .<  (
n (.g `  W ) y ) )  <->  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n )
) )
1209, 119bitrd 257 1  |-  ( W  e. oField  ->  ( W  e. Archi  <->  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1438    e. wcel 1869    =/= wne 2619   A.wral 2776   E.wrex 2777   class class class wbr 4421   ` cfv 5599  (class class class)co 6303   NNcn 10611   ZZcz 10939   Basecbs 15114   .rcmulr 15184   0gc0g 15331   ltcplt 16179   Grpcgrp 16662  .gcmg 16665   1rcur 17728   Ringcrg 17773   CRingccrg 17774  Unitcui 17860  /rcdvr 17903   DivRingcdr 17968  Fieldcfield 17969   ZRHomczrh 19063  oGrpcogrp 28462  Archicarchi 28495  oRingcorng 28560  oFieldcofld 28561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-inf2 8150  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618  ax-addf 9620  ax-mulf 9621
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-om 6705  df-1st 6805  df-2nd 6806  df-tpos 6979  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-oadd 7192  df-er 7369  df-map 7480  df-en 7576  df-dom 7577  df-sdom 7578  df-fin 7579  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-nn 10612  df-2 10670  df-3 10671  df-4 10672  df-5 10673  df-6 10674  df-7 10675  df-8 10676  df-9 10677  df-10 10678  df-n0 10872  df-z 10940  df-dec 11054  df-uz 11162  df-fz 11787  df-seq 12215  df-struct 15116  df-ndx 15117  df-slot 15118  df-base 15119  df-sets 15120  df-ress 15121  df-plusg 15196  df-mulr 15197  df-starv 15198  df-tset 15202  df-ple 15203  df-ds 15205  df-unif 15206  df-0g 15333  df-preset 16166  df-poset 16184  df-plt 16197  df-toset 16273  df-mgm 16481  df-sgrp 16520  df-mnd 16530  df-mhm 16575  df-grp 16666  df-minusg 16667  df-sbg 16668  df-mulg 16669  df-subg 16807  df-ghm 16874  df-cmn 17425  df-mgp 17717  df-ur 17729  df-ring 17775  df-cring 17776  df-oppr 17844  df-dvdsr 17862  df-unit 17863  df-invr 17893  df-dvr 17904  df-rnghom 17936  df-drng 17970  df-field 17971  df-subrg 17999  df-cnfld 18964  df-zring 19032  df-zrh 19067  df-omnd 28463  df-ogrp 28464  df-inftm 28496  df-archi 28497  df-orng 28562  df-ofld 28563
This theorem is referenced by:  rearchi  28607
  Copyright terms: Public domain W3C validator