Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isarchi Structured version   Unicode version

Theorem isarchi 28506
Description: Express the predicate " W is Archimedean ". (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
isarchi.b  |-  B  =  ( Base `  W
)
isarchi.0  |-  .0.  =  ( 0g `  W )
isarchi.i  |-  .<  =  (<<<
`  W )
Assertion
Ref Expression
isarchi  |-  ( W  e.  V  ->  ( W  e. Archi  <->  A. x  e.  B  A. y  e.  B  -.  x  .<  y ) )
Distinct variable groups:    x, y, B    x, W, y
Allowed substitution hints:    .< ( x, y)    V( x, y)    .0. ( x, y)

Proof of Theorem isarchi
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 fveq2 5881 . . . 4  |-  ( w  =  W  ->  (<<< `  w )  =  (<<< `  W ) )
21eqeq1d 2424 . . 3  |-  ( w  =  W  ->  (
(<<< `  w )  =  (/) 
<->  (<<< `  W )  =  (/) ) )
3 df-archi 28503 . . 3  |- Archi  =  {
w  |  (<<< `  w
)  =  (/) }
42, 3elab2g 3219 . 2  |-  ( W  e.  V  ->  ( W  e. Archi  <->  (<<< `  W )  =  (/) ) )
5 isarchi.b . . . 4  |-  B  =  ( Base `  W
)
65inftmrel 28504 . . 3  |-  ( W  e.  V  ->  (<<< `  W )  C_  ( B  X.  B ) )
7 ss0b 3794 . . . . 5  |-  ( (<<< `  W )  C_  (/)  <->  (<<< `  W
)  =  (/) )
8 ssrel2 4944 . . . . 5  |-  ( (<<< `  W )  C_  ( B  X.  B )  -> 
( (<<< `  W )  C_  (/)  <->  A. x  e.  B  A. y  e.  B  ( <. x ,  y >.  e.  (<<< `  W )  ->  <. x ,  y >.  e.  (/) ) ) )
97, 8syl5bbr 262 . . . 4  |-  ( (<<< `  W )  C_  ( B  X.  B )  -> 
( (<<< `  W )  =  (/) 
<-> 
A. x  e.  B  A. y  e.  B  ( <. x ,  y
>.  e.  (<<< `  W )  ->  <. x ,  y >.  e.  (/) ) ) )
10 noel 3765 . . . . . . . 8  |-  -.  <. x ,  y >.  e.  (/)
1110nbn 348 . . . . . . 7  |-  ( -. 
<. x ,  y >.  e.  (<<< `  W )  <->  ( <. x ,  y >.  e.  (<<< `  W )  <->  <. x ,  y >.  e.  (/) ) )
12 isarchi.i . . . . . . . . 9  |-  .<  =  (<<<
`  W )
1312breqi 4429 . . . . . . . 8  |-  ( x 
.<  y  <->  x (<<< `  W
) y )
14 df-br 4424 . . . . . . . 8  |-  ( x (<<< `  W ) y  <->  <. x ,  y >.  e.  (<<< `  W ) )
1513, 14bitri 252 . . . . . . 7  |-  ( x 
.<  y  <->  <. x ,  y
>.  e.  (<<< `  W ) )
1611, 15xchnxbir 310 . . . . . 6  |-  ( -.  x  .<  y  <->  ( <. x ,  y >.  e.  (<<< `  W )  <->  <. x ,  y >.  e.  (/) ) )
1710pm2.21i 134 . . . . . . 7  |-  ( <.
x ,  y >.  e.  (/)  ->  <. x ,  y >.  e.  (<<< `  W ) )
18 dfbi2 632 . . . . . . 7  |-  ( (
<. x ,  y >.  e.  (<<< `  W )  <->  <. x ,  y >.  e.  (/) )  <->  ( ( <. x ,  y >.  e.  (<<< `  W )  ->  <. x ,  y >.  e.  (/) )  /\  ( <. x ,  y >.  e.  (/)  ->  <. x ,  y >.  e.  (<<< `  W ) ) ) )
1917, 18mpbiran2 927 . . . . . 6  |-  ( (
<. x ,  y >.  e.  (<<< `  W )  <->  <. x ,  y >.  e.  (/) )  <->  ( <. x ,  y >.  e.  (<<< `  W )  ->  <. x ,  y >.  e.  (/) ) )
2016, 19bitri 252 . . . . 5  |-  ( -.  x  .<  y  <->  ( <. x ,  y >.  e.  (<<< `  W )  ->  <. x ,  y >.  e.  (/) ) )
21202ralbii 2854 . . . 4  |-  ( A. x  e.  B  A. y  e.  B  -.  x  .<  y  <->  A. x  e.  B  A. y  e.  B  ( <. x ,  y >.  e.  (<<< `  W )  ->  <. x ,  y >.  e.  (/) ) )
229, 21syl6bbr 266 . . 3  |-  ( (<<< `  W )  C_  ( B  X.  B )  -> 
( (<<< `  W )  =  (/) 
<-> 
A. x  e.  B  A. y  e.  B  -.  x  .<  y ) )
236, 22syl 17 . 2  |-  ( W  e.  V  ->  (
(<<< `  W )  =  (/) 
<-> 
A. x  e.  B  A. y  e.  B  -.  x  .<  y ) )
244, 23bitrd 256 1  |-  ( W  e.  V  ->  ( W  e. Archi  <->  A. x  e.  B  A. y  e.  B  -.  x  .<  y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    = wceq 1437    e. wcel 1872   A.wral 2771    C_ wss 3436   (/)c0 3761   <.cop 4004   class class class wbr 4423    X. cxp 4851   ` cfv 5601   Basecbs 15120   0gc0g 15337  <<<cinftm 28500  Archicarchi 28501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-rab 2780  df-v 3082  df-sbc 3300  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-iota 5565  df-fun 5603  df-fv 5609  df-ov 6308  df-inftm 28502  df-archi 28503
This theorem is referenced by:  xrnarchi  28508  isarchi2  28509
  Copyright terms: Public domain W3C validator