MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs3lem Structured version   Unicode version

Theorem isacs3lem 15357
Description: An algebraic closure system satisfies isacs3 15365. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
isacs3lem  |-  ( C  e.  (ACS `  X
)  ->  ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C ( (toInc `  s )  e. Dirset  ->  U. s  e.  C ) ) )
Distinct variable groups:    C, s    X, s

Proof of Theorem isacs3lem
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acsmre 14611 . 2  |-  ( C  e.  (ACS `  X
)  ->  C  e.  (Moore `  X ) )
2 mresspw 14551 . . . . . . . . . . 11  |-  ( C  e.  (Moore `  X
)  ->  C  C_  ~P X )
31, 2syl 16 . . . . . . . . . 10  |-  ( C  e.  (ACS `  X
)  ->  C  C_  ~P X )
4 sspwb 4562 . . . . . . . . . 10  |-  ( C 
C_  ~P X  <->  ~P C  C_ 
~P ~P X )
53, 4sylib 196 . . . . . . . . 9  |-  ( C  e.  (ACS `  X
)  ->  ~P C  C_ 
~P ~P X )
65sselda 3377 . . . . . . . 8  |-  ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  -> 
s  e.  ~P ~P X )
76elpwid 3891 . . . . . . 7  |-  ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  -> 
s  C_  ~P X
)
8 sspwuni 4277 . . . . . . 7  |-  ( s 
C_  ~P X  <->  U. s  C_  X )
97, 8sylib 196 . . . . . 6  |-  ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  ->  U. s  C_  X )
109adantr 465 . . . . 5  |-  ( ( ( C  e.  (ACS
`  X )  /\  s  e.  ~P C
)  /\  (toInc `  s
)  e. Dirset )  ->  U. s  C_  X )
11 inss1 3591 . . . . . . . . . . . 12  |-  ( ~P
U. s  i^i  Fin )  C_  ~P U. s
1211sseli 3373 . . . . . . . . . . 11  |-  ( x  e.  ( ~P U. s  i^i  Fin )  ->  x  e.  ~P U. s
)
1312elpwid 3891 . . . . . . . . . 10  |-  ( x  e.  ( ~P U. s  i^i  Fin )  ->  x  C_  U. s )
14 inss2 3592 . . . . . . . . . . 11  |-  ( ~P
U. s  i^i  Fin )  C_  Fin
1514sseli 3373 . . . . . . . . . 10  |-  ( x  e.  ( ~P U. s  i^i  Fin )  ->  x  e.  Fin )
16 fissuni 7637 . . . . . . . . . 10  |-  ( ( x  C_  U. s  /\  x  e.  Fin )  ->  E. y  e.  ( ~P s  i^i  Fin ) x  C_  U. y
)
1713, 15, 16syl2anc 661 . . . . . . . . 9  |-  ( x  e.  ( ~P U. s  i^i  Fin )  ->  E. y  e.  ( ~P s  i^i  Fin )
x  C_  U. y
)
1817ad2antll 728 . . . . . . . 8  |-  ( ( ( C  e.  (ACS
`  X )  /\  s  e.  ~P C
)  /\  ( (toInc `  s )  e. Dirset  /\  x  e.  ( ~P U. s  i^i  Fin ) ) )  ->  E. y  e.  ( ~P s  i^i  Fin ) x  C_  U. y
)
191ad3antrrr 729 . . . . . . . . . 10  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  x  e.  ( ~P U. s  i^i 
Fin ) ) )  /\  ( y  e.  ( ~P s  i^i 
Fin )  /\  x  C_ 
U. y ) )  ->  C  e.  (Moore `  X ) )
20 eqid 2443 . . . . . . . . . 10  |-  (mrCls `  C )  =  (mrCls `  C )
21 simprr 756 . . . . . . . . . 10  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  x  e.  ( ~P U. s  i^i 
Fin ) ) )  /\  ( y  e.  ( ~P s  i^i 
Fin )  /\  x  C_ 
U. y ) )  ->  x  C_  U. y
)
22 inss1 3591 . . . . . . . . . . . . . . 15  |-  ( ~P s  i^i  Fin )  C_ 
~P s
2322sseli 3373 . . . . . . . . . . . . . 14  |-  ( y  e.  ( ~P s  i^i  Fin )  ->  y  e.  ~P s )
2423elpwid 3891 . . . . . . . . . . . . 13  |-  ( y  e.  ( ~P s  i^i  Fin )  ->  y  C_  s )
2524unissd 4136 . . . . . . . . . . . 12  |-  ( y  e.  ( ~P s  i^i  Fin )  ->  U. y  C_ 
U. s )
2625ad2antrl 727 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  x  e.  ( ~P U. s  i^i 
Fin ) ) )  /\  ( y  e.  ( ~P s  i^i 
Fin )  /\  x  C_ 
U. y ) )  ->  U. y  C_  U. s
)
279ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  x  e.  ( ~P U. s  i^i 
Fin ) ) )  /\  ( y  e.  ( ~P s  i^i 
Fin )  /\  x  C_ 
U. y ) )  ->  U. s  C_  X
)
2826, 27sstrd 3387 . . . . . . . . . 10  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  x  e.  ( ~P U. s  i^i 
Fin ) ) )  /\  ( y  e.  ( ~P s  i^i 
Fin )  /\  x  C_ 
U. y ) )  ->  U. y  C_  X
)
2919, 20, 21, 28mrcssd 14583 . . . . . . . . 9  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  x  e.  ( ~P U. s  i^i 
Fin ) ) )  /\  ( y  e.  ( ~P s  i^i 
Fin )  /\  x  C_ 
U. y ) )  ->  ( (mrCls `  C ) `  x
)  C_  ( (mrCls `  C ) `  U. y ) )
30 simpl 457 . . . . . . . . . . . . . . 15  |-  ( ( (toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i  Fin ) )  ->  (toInc `  s )  e. Dirset )
3124adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( (toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i  Fin ) )  ->  y  C_  s )
32 inss2 3592 . . . . . . . . . . . . . . . . 17  |-  ( ~P s  i^i  Fin )  C_ 
Fin
3332sseli 3373 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( ~P s  i^i  Fin )  ->  y  e.  Fin )
3433adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( (toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i  Fin ) )  ->  y  e.  Fin )
35 ipodrsfi 15354 . . . . . . . . . . . . . . 15  |-  ( ( (toInc `  s )  e. Dirset  /\  y  C_  s  /\  y  e.  Fin )  ->  E. x  e.  s 
U. y  C_  x
)
3630, 31, 34, 35syl3anc 1218 . . . . . . . . . . . . . 14  |-  ( ( (toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i  Fin ) )  ->  E. x  e.  s  U. y  C_  x )
3736adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( C  e.  (ACS
`  X )  /\  s  e.  ~P C
)  /\  ( (toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i 
Fin ) ) )  ->  E. x  e.  s 
U. y  C_  x
)
381ad3antrrr 729 . . . . . . . . . . . . . . 15  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i  Fin ) ) )  /\  ( x  e.  s  /\  U. y  C_  x
) )  ->  C  e.  (Moore `  X )
)
39 simprr 756 . . . . . . . . . . . . . . 15  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i  Fin ) ) )  /\  ( x  e.  s  /\  U. y  C_  x
) )  ->  U. y  C_  x )
40 elpwi 3890 . . . . . . . . . . . . . . . . . 18  |-  ( s  e.  ~P C  -> 
s  C_  C )
4140adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  -> 
s  C_  C )
4241ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i  Fin ) ) )  /\  ( x  e.  s  /\  U. y  C_  x
) )  ->  s  C_  C )
43 simprl 755 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i  Fin ) ) )  /\  ( x  e.  s  /\  U. y  C_  x
) )  ->  x  e.  s )
4442, 43sseldd 3378 . . . . . . . . . . . . . . 15  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i  Fin ) ) )  /\  ( x  e.  s  /\  U. y  C_  x
) )  ->  x  e.  C )
4520mrcsscl 14579 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  (Moore `  X )  /\  U. y  C_  x  /\  x  e.  C )  ->  (
(mrCls `  C ) `  U. y )  C_  x )
4638, 39, 44, 45syl3anc 1218 . . . . . . . . . . . . . 14  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i  Fin ) ) )  /\  ( x  e.  s  /\  U. y  C_  x
) )  ->  (
(mrCls `  C ) `  U. y )  C_  x )
47 elssuni 4142 . . . . . . . . . . . . . . 15  |-  ( x  e.  s  ->  x  C_ 
U. s )
4847ad2antrl 727 . . . . . . . . . . . . . 14  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i  Fin ) ) )  /\  ( x  e.  s  /\  U. y  C_  x
) )  ->  x  C_ 
U. s )
4946, 48sstrd 3387 . . . . . . . . . . . . 13  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i  Fin ) ) )  /\  ( x  e.  s  /\  U. y  C_  x
) )  ->  (
(mrCls `  C ) `  U. y )  C_  U. s )
5037, 49rexlimddv 2866 . . . . . . . . . . . 12  |-  ( ( ( C  e.  (ACS
`  X )  /\  s  e.  ~P C
)  /\  ( (toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i 
Fin ) ) )  ->  ( (mrCls `  C ) `  U. y )  C_  U. s
)
5150anassrs 648 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (toInc `  s )  e. Dirset )  /\  y  e.  ( ~P s  i^i  Fin )
)  ->  ( (mrCls `  C ) `  U. y )  C_  U. s
)
5251adantrr 716 . . . . . . . . . 10  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (toInc `  s )  e. Dirset )  /\  ( y  e.  ( ~P s  i^i  Fin )  /\  x  C_  U. y
) )  ->  (
(mrCls `  C ) `  U. y )  C_  U. s )
5352adantlrr 720 . . . . . . . . 9  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  x  e.  ( ~P U. s  i^i 
Fin ) ) )  /\  ( y  e.  ( ~P s  i^i 
Fin )  /\  x  C_ 
U. y ) )  ->  ( (mrCls `  C ) `  U. y )  C_  U. s
)
5429, 53sstrd 3387 . . . . . . . 8  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  x  e.  ( ~P U. s  i^i 
Fin ) ) )  /\  ( y  e.  ( ~P s  i^i 
Fin )  /\  x  C_ 
U. y ) )  ->  ( (mrCls `  C ) `  x
)  C_  U. s
)
5518, 54rexlimddv 2866 . . . . . . 7  |-  ( ( ( C  e.  (ACS
`  X )  /\  s  e.  ~P C
)  /\  ( (toInc `  s )  e. Dirset  /\  x  e.  ( ~P U. s  i^i  Fin ) ) )  ->  ( (mrCls `  C ) `  x
)  C_  U. s
)
5655anassrs 648 . . . . . 6  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (toInc `  s )  e. Dirset )  /\  x  e.  ( ~P U. s  i^i  Fin ) )  ->  (
(mrCls `  C ) `  x )  C_  U. s
)
5756ralrimiva 2820 . . . . 5  |-  ( ( ( C  e.  (ACS
`  X )  /\  s  e.  ~P C
)  /\  (toInc `  s
)  e. Dirset )  ->  A. x  e.  ( ~P
U. s  i^i  Fin ) ( (mrCls `  C ) `  x
)  C_  U. s
)
5820acsfiel 14613 . . . . . 6  |-  ( C  e.  (ACS `  X
)  ->  ( U. s  e.  C  <->  ( U. s  C_  X  /\  A. x  e.  ( ~P U. s  i^i  Fin )
( (mrCls `  C
) `  x )  C_ 
U. s ) ) )
5958ad2antrr 725 . . . . 5  |-  ( ( ( C  e.  (ACS
`  X )  /\  s  e.  ~P C
)  /\  (toInc `  s
)  e. Dirset )  ->  ( U. s  e.  C  <->  ( U. s  C_  X  /\  A. x  e.  ( ~P U. s  i^i 
Fin ) ( (mrCls `  C ) `  x
)  C_  U. s
) ) )
6010, 57, 59mpbir2and 913 . . . 4  |-  ( ( ( C  e.  (ACS
`  X )  /\  s  e.  ~P C
)  /\  (toInc `  s
)  e. Dirset )  ->  U. s  e.  C )
6160ex 434 . . 3  |-  ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  -> 
( (toInc `  s
)  e. Dirset  ->  U. s  e.  C ) )
6261ralrimiva 2820 . 2  |-  ( C  e.  (ACS `  X
)  ->  A. s  e.  ~P  C ( (toInc `  s )  e. Dirset  ->  U. s  e.  C ) )
631, 62jca 532 1  |-  ( C  e.  (ACS `  X
)  ->  ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C ( (toInc `  s )  e. Dirset  ->  U. s  e.  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1756   A.wral 2736   E.wrex 2737    i^i cin 3348    C_ wss 3349   ~Pcpw 3881   U.cuni 4112   ` cfv 5439   Fincfn 7331  Moorecmre 14541  mrClscmrc 14542  ACScacs 14544  Dirsetcdrs 15118  toInccipo 15342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-1o 6941  df-oadd 6945  df-er 7122  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-nn 10344  df-2 10401  df-3 10402  df-4 10403  df-5 10404  df-6 10405  df-7 10406  df-8 10407  df-9 10408  df-10 10409  df-n0 10601  df-z 10668  df-dec 10777  df-uz 10883  df-fz 11459  df-struct 14197  df-ndx 14198  df-slot 14199  df-base 14200  df-tset 14278  df-ple 14279  df-ocomp 14280  df-mre 14545  df-mrc 14546  df-acs 14548  df-preset 15119  df-drs 15120  df-poset 15137  df-ipo 15343
This theorem is referenced by:  acsdrsel  15358  acsdrscl  15361  acsficl  15362  isacs5  15363  isacs4  15364  isacs3  15365
  Copyright terms: Public domain W3C validator