MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs Structured version   Unicode version

Theorem isacs 15509
Description: A set is an algebraic closure system iff it is specified by some function of the finite subsets, such that a set is closed iff it does not expand under the operation. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
isacs  |-  ( C  e.  (ACS `  X
)  <->  ( C  e.  (Moore `  X )  /\  E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  C  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) ) )
Distinct variable groups:    C, f,
s    f, X, s

Proof of Theorem isacs
Dummy variables  c  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 5899 . 2  |-  ( C  e.  (ACS `  X
)  ->  X  e.  _V )
2 elfvex 5899 . . 3  |-  ( C  e.  (Moore `  X
)  ->  X  e.  _V )
32adantr 466 . 2  |-  ( ( C  e.  (Moore `  X )  /\  E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  C  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) )  ->  X  e.  _V )
4 fveq2 5872 . . . . . 6  |-  ( x  =  X  ->  (Moore `  x )  =  (Moore `  X ) )
5 pweq 3979 . . . . . . . . 9  |-  ( x  =  X  ->  ~P x  =  ~P X
)
65, 5feq23d 5732 . . . . . . . 8  |-  ( x  =  X  ->  (
f : ~P x --> ~P x  <->  f : ~P X
--> ~P X ) )
75raleqdv 3029 . . . . . . . 8  |-  ( x  =  X  ->  ( A. s  e.  ~P  x ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s )  <->  A. s  e.  ~P  X ( s  e.  c  <->  U. (
f " ( ~P s  i^i  Fin )
)  C_  s )
) )
86, 7anbi12d 715 . . . . . . 7  |-  ( x  =  X  ->  (
( f : ~P x
--> ~P x  /\  A. s  e.  ~P  x
( s  e.  c  <->  U. ( f " ( ~P s  i^i  Fin )
)  C_  s )
)  <->  ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) ) )
98exbidv 1758 . . . . . 6  |-  ( x  =  X  ->  ( E. f ( f : ~P x --> ~P x  /\  A. s  e.  ~P  x ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) )  <->  E. f
( f : ~P X
--> ~P X  /\  A. s  e.  ~P  X
( s  e.  c  <->  U. ( f " ( ~P s  i^i  Fin )
)  C_  s )
) ) )
104, 9rabeqbidv 3073 . . . . 5  |-  ( x  =  X  ->  { c  e.  (Moore `  x
)  |  E. f
( f : ~P x
--> ~P x  /\  A. s  e.  ~P  x
( s  e.  c  <->  U. ( f " ( ~P s  i^i  Fin )
)  C_  s )
) }  =  {
c  e.  (Moore `  X )  |  E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) } )
11 df-acs 15447 . . . . 5  |- ACS  =  ( x  e.  _V  |->  { c  e.  (Moore `  x )  |  E. f ( f : ~P x --> ~P x  /\  A. s  e.  ~P  x ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) } )
12 fvex 5882 . . . . . 6  |-  (Moore `  X )  e.  _V
1312rabex 4567 . . . . 5  |-  { c  e.  (Moore `  X
)  |  E. f
( f : ~P X
--> ~P X  /\  A. s  e.  ~P  X
( s  e.  c  <->  U. ( f " ( ~P s  i^i  Fin )
)  C_  s )
) }  e.  _V
1410, 11, 13fvmpt 5955 . . . 4  |-  ( X  e.  _V  ->  (ACS `  X )  =  {
c  e.  (Moore `  X )  |  E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) } )
1514eleq2d 2490 . . 3  |-  ( X  e.  _V  ->  ( C  e.  (ACS `  X
)  <->  C  e.  { c  e.  (Moore `  X
)  |  E. f
( f : ~P X
--> ~P X  /\  A. s  e.  ~P  X
( s  e.  c  <->  U. ( f " ( ~P s  i^i  Fin )
)  C_  s )
) } ) )
16 eleq2 2493 . . . . . . . 8  |-  ( c  =  C  ->  (
s  e.  c  <->  s  e.  C ) )
1716bibi1d 320 . . . . . . 7  |-  ( c  =  C  ->  (
( s  e.  c  <->  U. ( f " ( ~P s  i^i  Fin )
)  C_  s )  <->  ( s  e.  C  <->  U. (
f " ( ~P s  i^i  Fin )
)  C_  s )
) )
1817ralbidv 2862 . . . . . 6  |-  ( c  =  C  ->  ( A. s  e.  ~P  X ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s )  <->  A. s  e.  ~P  X ( s  e.  C  <->  U. (
f " ( ~P s  i^i  Fin )
)  C_  s )
) )
1918anbi2d 708 . . . . 5  |-  ( c  =  C  ->  (
( f : ~P X
--> ~P X  /\  A. s  e.  ~P  X
( s  e.  c  <->  U. ( f " ( ~P s  i^i  Fin )
)  C_  s )
)  <->  ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  C  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) ) )
2019exbidv 1758 . . . 4  |-  ( c  =  C  ->  ( E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) )  <->  E. f
( f : ~P X
--> ~P X  /\  A. s  e.  ~P  X
( s  e.  C  <->  U. ( f " ( ~P s  i^i  Fin )
)  C_  s )
) ) )
2120elrab 3226 . . 3  |-  ( C  e.  { c  e.  (Moore `  X )  |  E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) }  <-> 
( C  e.  (Moore `  X )  /\  E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  C  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) ) )
2215, 21syl6bb 264 . 2  |-  ( X  e.  _V  ->  ( C  e.  (ACS `  X
)  <->  ( C  e.  (Moore `  X )  /\  E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  C  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) ) ) )
231, 3, 22pm5.21nii 354 1  |-  ( C  e.  (ACS `  X
)  <->  ( C  e.  (Moore `  X )  /\  E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  C  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    /\ wa 370    = wceq 1437   E.wex 1659    e. wcel 1867   A.wral 2773   {crab 2777   _Vcvv 3078    i^i cin 3432    C_ wss 3433   ~Pcpw 3976   U.cuni 4213   "cima 4848   -->wf 5588   ` cfv 5592   Fincfn 7568  Moorecmre 15440  ACScacs 15443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-rab 2782  df-v 3080  df-sbc 3297  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-br 4418  df-opab 4476  df-mpt 4477  df-id 4760  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-fv 5600  df-acs 15447
This theorem is referenced by:  acsmre  15510  isacs2  15511  isacs1i  15515  mreacs  15516
  Copyright terms: Public domain W3C validator