MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isablo Structured version   Unicode version

Theorem isablo 23782
Description: The predicate "is an Abelian (commutative) group operation." (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
isabl.1  |-  X  =  ran  G
Assertion
Ref Expression
isablo  |-  ( G  e.  AbelOp 
<->  ( G  e.  GrpOp  /\ 
A. x  e.  X  A. y  e.  X  ( x G y )  =  ( y G x ) ) )
Distinct variable groups:    x, y, G    x, X, y

Proof of Theorem isablo
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 rneq 5077 . . . . 5  |-  ( g  =  G  ->  ran  g  =  ran  G )
2 isabl.1 . . . . 5  |-  X  =  ran  G
31, 2syl6eqr 2493 . . . 4  |-  ( g  =  G  ->  ran  g  =  X )
4 raleq 2929 . . . . 5  |-  ( ran  g  =  X  -> 
( A. y  e. 
ran  g ( x g y )  =  ( y g x )  <->  A. y  e.  X  ( x g y )  =  ( y g x ) ) )
54raleqbi1dv 2937 . . . 4  |-  ( ran  g  =  X  -> 
( A. x  e. 
ran  g A. y  e.  ran  g ( x g y )  =  ( y g x )  <->  A. x  e.  X  A. y  e.  X  ( x g y )  =  ( y g x ) ) )
63, 5syl 16 . . 3  |-  ( g  =  G  ->  ( A. x  e.  ran  g A. y  e.  ran  g ( x g y )  =  ( y g x )  <->  A. x  e.  X  A. y  e.  X  ( x g y )  =  ( y g x ) ) )
7 oveq 6109 . . . . 5  |-  ( g  =  G  ->  (
x g y )  =  ( x G y ) )
8 oveq 6109 . . . . 5  |-  ( g  =  G  ->  (
y g x )  =  ( y G x ) )
97, 8eqeq12d 2457 . . . 4  |-  ( g  =  G  ->  (
( x g y )  =  ( y g x )  <->  ( x G y )  =  ( y G x ) ) )
1092ralbidv 2769 . . 3  |-  ( g  =  G  ->  ( A. x  e.  X  A. y  e.  X  ( x g y )  =  ( y g x )  <->  A. x  e.  X  A. y  e.  X  ( x G y )  =  ( y G x ) ) )
116, 10bitrd 253 . 2  |-  ( g  =  G  ->  ( A. x  e.  ran  g A. y  e.  ran  g ( x g y )  =  ( y g x )  <->  A. x  e.  X  A. y  e.  X  ( x G y )  =  ( y G x ) ) )
12 df-ablo 23781 . 2  |-  AbelOp  =  {
g  e.  GrpOp  |  A. x  e.  ran  g A. y  e.  ran  g ( x g y )  =  ( y g x ) }
1311, 12elrab2 3131 1  |-  ( G  e.  AbelOp 
<->  ( G  e.  GrpOp  /\ 
A. x  e.  X  A. y  e.  X  ( x G y )  =  ( y G x ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2727   ran crn 4853  (class class class)co 6103   GrpOpcgr 23685   AbelOpcablo 23780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ral 2732  df-rex 2733  df-rab 2736  df-v 2986  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-nul 3650  df-if 3804  df-sn 3890  df-pr 3892  df-op 3896  df-uni 4104  df-br 4305  df-opab 4363  df-cnv 4860  df-dm 4862  df-rn 4863  df-iota 5393  df-fv 5438  df-ov 6106  df-ablo 23781
This theorem is referenced by:  ablogrpo  23783  ablocom  23784  isabloi  23787  isabloda  23798  subgoablo  23810  ghablo  23868
  Copyright terms: Public domain W3C validator