Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  is2wlkonot Structured version   Unicode version

Theorem is2wlkonot 30553
Description: The set of walks of length 2 between two vertices (in a graph) as ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018.)
Assertion
Ref Expression
is2wlkonot  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( V 2WalksOnOt  E )  =  ( a  e.  V ,  b  e.  V  |->  { t  e.  ( ( V  X.  V )  X.  V
)  |  E. f E. p ( f ( a ( V WalkOn  E
) b ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) ) } ) )
Distinct variable groups:    E, a,
b, t, f, p    V, a, b, t, f, p
Allowed substitution hints:    X( t, f, p, a, b)    Y( t, f, p, a, b)

Proof of Theorem is2wlkonot
Dummy variables  e 
v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3087 . . 3  |-  ( V  e.  X  ->  V  e.  _V )
21adantr 465 . 2  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  V  e.  _V )
3 elex 3087 . . 3  |-  ( E  e.  Y  ->  E  e.  _V )
43adantl 466 . 2  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  E  e.  _V )
5 mpt2exga 6762 . . . 4  |-  ( ( V  e.  X  /\  V  e.  X )  ->  ( a  e.  V ,  b  e.  V  |->  { t  e.  ( ( V  X.  V
)  X.  V )  |  E. f E. p ( f ( a ( V WalkOn  E
) b ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) ) } )  e. 
_V )
65anidms 645 . . 3  |-  ( V  e.  X  ->  (
a  e.  V , 
b  e.  V  |->  { t  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p
( f ( a ( V WalkOn  E ) b ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) ) } )  e. 
_V )
76adantr 465 . 2  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( a  e.  V ,  b  e.  V  |->  { t  e.  ( ( V  X.  V
)  X.  V )  |  E. f E. p ( f ( a ( V WalkOn  E
) b ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) ) } )  e. 
_V )
8 simpl 457 . . . 4  |-  ( ( v  =  V  /\  e  =  E )  ->  v  =  V )
9 id 22 . . . . . . . 8  |-  ( v  =  V  ->  v  =  V )
109, 9xpeq12d 4976 . . . . . . 7  |-  ( v  =  V  ->  (
v  X.  v )  =  ( V  X.  V ) )
1110, 9xpeq12d 4976 . . . . . 6  |-  ( v  =  V  ->  (
( v  X.  v
)  X.  v )  =  ( ( V  X.  V )  X.  V ) )
1211adantr 465 . . . . 5  |-  ( ( v  =  V  /\  e  =  E )  ->  ( ( v  X.  v )  X.  v
)  =  ( ( V  X.  V )  X.  V ) )
13 oveq12 6212 . . . . . . . . 9  |-  ( ( v  =  V  /\  e  =  E )  ->  ( v WalkOn  e )  =  ( V WalkOn  E
) )
1413oveqd 6220 . . . . . . . 8  |-  ( ( v  =  V  /\  e  =  E )  ->  ( a ( v WalkOn 
e ) b )  =  ( a ( V WalkOn  E ) b ) )
1514breqd 4414 . . . . . . 7  |-  ( ( v  =  V  /\  e  =  E )  ->  ( f ( a ( v WalkOn  e ) b ) p  <->  f (
a ( V WalkOn  E
) b ) p ) )
16153anbi1d 1294 . . . . . 6  |-  ( ( v  =  V  /\  e  =  E )  ->  ( ( f ( a ( v WalkOn  e
) b ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) )  <->  ( f ( a ( V WalkOn  E
) b ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) ) ) )
17162exbidv 1683 . . . . 5  |-  ( ( v  =  V  /\  e  =  E )  ->  ( E. f E. p ( f ( a ( v WalkOn  e
) b ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) )  <->  E. f E. p
( f ( a ( V WalkOn  E ) b ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) ) ) )
1812, 17rabeqbidv 3073 . . . 4  |-  ( ( v  =  V  /\  e  =  E )  ->  { t  e.  ( ( v  X.  v
)  X.  v )  |  E. f E. p ( f ( a ( v WalkOn  e
) b ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) ) }  =  {
t  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p
( f ( a ( V WalkOn  E ) b ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) ) } )
198, 8, 18mpt2eq123dv 6260 . . 3  |-  ( ( v  =  V  /\  e  =  E )  ->  ( a  e.  v ,  b  e.  v 
|->  { t  e.  ( ( v  X.  v
)  X.  v )  |  E. f E. p ( f ( a ( v WalkOn  e
) b ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) ) } )  =  ( a  e.  V ,  b  e.  V  |->  { t  e.  ( ( V  X.  V
)  X.  V )  |  E. f E. p ( f ( a ( V WalkOn  E
) b ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) ) } ) )
20 df-2wlkonot 30548 . . 3  |- 2WalksOnOt  =  ( v  e.  _V , 
e  e.  _V  |->  ( a  e.  v ,  b  e.  v  |->  { t  e.  ( ( v  X.  v )  X.  v )  |  E. f E. p
( f ( a ( v WalkOn  e ) b ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) ) } ) )
2119, 20ovmpt2ga 6333 . 2  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  (
a  e.  V , 
b  e.  V  |->  { t  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p
( f ( a ( V WalkOn  E ) b ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) ) } )  e. 
_V )  ->  ( V 2WalksOnOt  E )  =  ( a  e.  V , 
b  e.  V  |->  { t  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p
( f ( a ( V WalkOn  E ) b ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) ) } ) )
222, 4, 7, 21syl3anc 1219 1  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( V 2WalksOnOt  E )  =  ( a  e.  V ,  b  e.  V  |->  { t  e.  ( ( V  X.  V )  X.  V
)  |  E. f E. p ( f ( a ( V WalkOn  E
) b ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) ) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370   E.wex 1587    e. wcel 1758   {crab 2803   _Vcvv 3078   class class class wbr 4403    X. cxp 4949   ` cfv 5529  (class class class)co 6203    |-> cmpt2 6205   1stc1st 6688   2ndc2nd 6689   1c1 9398   2c2 10486   #chash 12224   WalkOn cwlkon 23588   2WalksOnOt c2wlkonot 30545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-1st 6690  df-2nd 6691  df-2wlkonot 30548
This theorem is referenced by:  2wlkonot  30555
  Copyright terms: Public domain W3C validator