MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  is2ndc Structured version   Unicode version

Theorem is2ndc 19710
Description: The property of being second-countable. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
is2ndc  |-  ( J  e.  2ndc  <->  E. x  e.  TopBases  ( x  ~<_  om  /\  ( topGen `
 x )  =  J ) )
Distinct variable group:    x, J

Proof of Theorem is2ndc
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 df-2ndc 19704 . . 3  |-  2ndc  =  { j  |  E. x  e.  TopBases  ( x  ~<_  om  /\  ( topGen `  x
)  =  j ) }
21eleq2i 2545 . 2  |-  ( J  e.  2ndc  <->  J  e.  { j  |  E. x  e.  TopBases  ( x  ~<_  om  /\  ( topGen `  x )  =  j ) } )
3 simpr 461 . . . . 5  |-  ( ( x  ~<_  om  /\  ( topGen `
 x )  =  J )  ->  ( topGen `
 x )  =  J )
4 fvex 5874 . . . . 5  |-  ( topGen `  x )  e.  _V
53, 4syl6eqelr 2564 . . . 4  |-  ( ( x  ~<_  om  /\  ( topGen `
 x )  =  J )  ->  J  e.  _V )
65rexlimivw 2952 . . 3  |-  ( E. x  e.  TopBases  ( x  ~<_  om  /\  ( topGen `  x )  =  J )  ->  J  e.  _V )
7 eqeq2 2482 . . . . 5  |-  ( j  =  J  ->  (
( topGen `  x )  =  j  <->  ( topGen `  x
)  =  J ) )
87anbi2d 703 . . . 4  |-  ( j  =  J  ->  (
( x  ~<_  om  /\  ( topGen `  x )  =  j )  <->  ( x  ~<_  om  /\  ( topGen `  x
)  =  J ) ) )
98rexbidv 2973 . . 3  |-  ( j  =  J  ->  ( E. x  e.  TopBases  ( x  ~<_  om  /\  ( topGen `  x )  =  j )  <->  E. x  e.  TopBases  ( x  ~<_  om  /\  ( topGen `
 x )  =  J ) ) )
106, 9elab3 3257 . 2  |-  ( J  e.  { j  |  E. x  e.  TopBases  ( x  ~<_  om  /\  ( topGen `
 x )  =  j ) }  <->  E. x  e. 
TopBases  ( x  ~<_  om  /\  ( topGen `  x )  =  J ) )
112, 10bitri 249 1  |-  ( J  e.  2ndc  <->  E. x  e.  TopBases  ( x  ~<_  om  /\  ( topGen `
 x )  =  J ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   {cab 2452   E.wrex 2815   _Vcvv 3113   class class class wbr 4447   ` cfv 5586   omcom 6678    ~<_ cdom 7511   topGenctg 14686   TopBasesctb 19162   2ndcc2ndc 19702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-nul 4576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-sn 4028  df-pr 4030  df-uni 4246  df-iota 5549  df-fv 5594  df-2ndc 19704
This theorem is referenced by:  2ndctop  19711  2ndci  19712  2ndcsb  19713  2ndcredom  19714  2ndc1stc  19715  2ndcrest  19718  2ndcctbss  19719  2ndcdisj  19720  2ndcomap  19722  2ndcsep  19723  dis2ndc  19724  tx2ndc  19884
  Copyright terms: Public domain W3C validator