MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  is2ndc Structured version   Unicode version

Theorem is2ndc 19030
Description: The property of being second-countable. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
is2ndc  |-  ( J  e.  2ndc  <->  E. x  e.  TopBases  ( x  ~<_  om  /\  ( topGen `
 x )  =  J ) )
Distinct variable group:    x, J

Proof of Theorem is2ndc
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 df-2ndc 19024 . . 3  |-  2ndc  =  { j  |  E. x  e.  TopBases  ( x  ~<_  om  /\  ( topGen `  x
)  =  j ) }
21eleq2i 2502 . 2  |-  ( J  e.  2ndc  <->  J  e.  { j  |  E. x  e.  TopBases  ( x  ~<_  om  /\  ( topGen `  x )  =  j ) } )
3 simpr 461 . . . . 5  |-  ( ( x  ~<_  om  /\  ( topGen `
 x )  =  J )  ->  ( topGen `
 x )  =  J )
4 fvex 5696 . . . . 5  |-  ( topGen `  x )  e.  _V
53, 4syl6eqelr 2527 . . . 4  |-  ( ( x  ~<_  om  /\  ( topGen `
 x )  =  J )  ->  J  e.  _V )
65rexlimivw 2832 . . 3  |-  ( E. x  e.  TopBases  ( x  ~<_  om  /\  ( topGen `  x )  =  J )  ->  J  e.  _V )
7 eqeq2 2447 . . . . 5  |-  ( j  =  J  ->  (
( topGen `  x )  =  j  <->  ( topGen `  x
)  =  J ) )
87anbi2d 703 . . . 4  |-  ( j  =  J  ->  (
( x  ~<_  om  /\  ( topGen `  x )  =  j )  <->  ( x  ~<_  om  /\  ( topGen `  x
)  =  J ) ) )
98rexbidv 2731 . . 3  |-  ( j  =  J  ->  ( E. x  e.  TopBases  ( x  ~<_  om  /\  ( topGen `  x )  =  j )  <->  E. x  e.  TopBases  ( x  ~<_  om  /\  ( topGen `
 x )  =  J ) ) )
106, 9elab3 3108 . 2  |-  ( J  e.  { j  |  E. x  e.  TopBases  ( x  ~<_  om  /\  ( topGen `
 x )  =  j ) }  <->  E. x  e. 
TopBases  ( x  ~<_  om  /\  ( topGen `  x )  =  J ) )
112, 10bitri 249 1  |-  ( J  e.  2ndc  <->  E. x  e.  TopBases  ( x  ~<_  om  /\  ( topGen `
 x )  =  J ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   {cab 2424   E.wrex 2711   _Vcvv 2967   class class class wbr 4287   ` cfv 5413   omcom 6471    ~<_ cdom 7300   topGenctg 14368   TopBasesctb 18482   2ndcc2ndc 19022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-nul 4416
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-v 2969  df-sbc 3182  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-sn 3873  df-pr 3875  df-uni 4087  df-iota 5376  df-fv 5421  df-2ndc 19024
This theorem is referenced by:  2ndctop  19031  2ndci  19032  2ndcsb  19033  2ndcredom  19034  2ndc1stc  19035  2ndcrest  19038  2ndcctbss  19039  2ndcdisj  19040  2ndcomap  19042  2ndcsep  19043  dis2ndc  19044  tx2ndc  19204
  Copyright terms: Public domain W3C validator