MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  irredrmul Structured version   Unicode version

Theorem irredrmul 16798
Description: The product of an irreducible element and a unit is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irredn0.i  |-  I  =  (Irred `  R )
irredrmul.u  |-  U  =  (Unit `  R )
irredrmul.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
irredrmul  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  ( X  .x.  Y )  e.  I )

Proof of Theorem irredrmul
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 989 . 2  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  X  e.  I )
2 simp1 988 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  R  e.  Ring )
3 simp3 990 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  Y  e.  U )
4 irredrmul.u . . . . . . . . 9  |-  U  =  (Unit `  R )
5 eqid 2442 . . . . . . . . 9  |-  (/r `  R
)  =  (/r `  R
)
64, 5unitdvcl 16778 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( X  .x.  Y )  e.  U  /\  Y  e.  U )  ->  (
( X  .x.  Y
) (/r `  R ) Y )  e.  U )
763com23 1193 . . . . . . 7  |-  ( ( R  e.  Ring  /\  Y  e.  U  /\  ( X  .x.  Y )  e.  U )  ->  (
( X  .x.  Y
) (/r `  R ) Y )  e.  U )
873expia 1189 . . . . . 6  |-  ( ( R  e.  Ring  /\  Y  e.  U )  ->  (
( X  .x.  Y
)  e.  U  -> 
( ( X  .x.  Y ) (/r `  R
) Y )  e.  U ) )
92, 3, 8syl2anc 661 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  (
( X  .x.  Y
)  e.  U  -> 
( ( X  .x.  Y ) (/r `  R
) Y )  e.  U ) )
10 irredn0.i . . . . . . . . 9  |-  I  =  (Irred `  R )
11 eqid 2442 . . . . . . . . 9  |-  ( Base `  R )  =  (
Base `  R )
1210, 11irredcl 16795 . . . . . . . 8  |-  ( X  e.  I  ->  X  e.  ( Base `  R
) )
13123ad2ant2 1010 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  X  e.  ( Base `  R
) )
14 irredrmul.t . . . . . . . 8  |-  .x.  =  ( .r `  R )
1511, 4, 5, 14dvrcan3 16783 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  R
)  /\  Y  e.  U )  ->  (
( X  .x.  Y
) (/r `  R ) Y )  =  X )
162, 13, 3, 15syl3anc 1218 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  (
( X  .x.  Y
) (/r `  R ) Y )  =  X )
1716eleq1d 2508 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  (
( ( X  .x.  Y ) (/r `  R
) Y )  e.  U  <->  X  e.  U
) )
189, 17sylibd 214 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  (
( X  .x.  Y
)  e.  U  ->  X  e.  U )
)
192ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  R  e.  Ring )
20 eldifi 3477 . . . . . . . . . 10  |-  ( y  e.  ( ( Base `  R )  \  U
)  ->  y  e.  ( Base `  R )
)
2120ad2antrl 727 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  y  e.  ( Base `  R )
)
223ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  Y  e.  U )
2311, 4, 5dvrcl 16777 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  y  e.  ( Base `  R
)  /\  Y  e.  U )  ->  (
y (/r `  R ) Y )  e.  ( Base `  R ) )
2419, 21, 22, 23syl3anc 1218 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( y
(/r `  R ) Y )  e.  ( Base `  R ) )
25 eldifn 3478 . . . . . . . . . 10  |-  ( y  e.  ( ( Base `  R )  \  U
)  ->  -.  y  e.  U )
2625ad2antrl 727 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  -.  y  e.  U )
274, 14unitmulcl 16755 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  (
y (/r `  R ) Y )  e.  U  /\  Y  e.  U )  ->  ( ( y (/r `  R ) Y ) 
.x.  Y )  e.  U )
28273com23 1193 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  Y  e.  U  /\  (
y (/r `  R ) Y )  e.  U )  ->  ( ( y (/r `  R ) Y )  .x.  Y )  e.  U )
29283expia 1189 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  Y  e.  U )  ->  (
( y (/r `  R
) Y )  e.  U  ->  ( (
y (/r `  R ) Y )  .x.  Y )  e.  U ) )
3019, 22, 29syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( (
y (/r `  R ) Y )  e.  U  -> 
( ( y (/r `  R ) Y ) 
.x.  Y )  e.  U ) )
3111, 4, 5, 14dvrcan1 16782 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  y  e.  ( Base `  R
)  /\  Y  e.  U )  ->  (
( y (/r `  R
) Y )  .x.  Y )  =  y )
3219, 21, 22, 31syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( (
y (/r `  R ) Y )  .x.  Y )  =  y )
3332eleq1d 2508 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( (
( y (/r `  R
) Y )  .x.  Y )  e.  U  <->  y  e.  U ) )
3430, 33sylibd 214 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( (
y (/r `  R ) Y )  e.  U  -> 
y  e.  U ) )
3526, 34mtod 177 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  -.  (
y (/r `  R ) Y )  e.  U )
3624, 35eldifd 3338 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( y
(/r `  R ) Y )  e.  ( (
Base `  R )  \  U ) )
37 simprr 756 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( x  .x.  y )  =  ( X  .x.  Y ) )
3837oveq1d 6105 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( (
x  .x.  y )
(/r `  R ) Y )  =  ( ( X  .x.  Y ) (/r `  R ) Y ) )
39 eldifi 3477 . . . . . . . . . 10  |-  ( x  e.  ( ( Base `  R )  \  U
)  ->  x  e.  ( Base `  R )
)
4039ad2antlr 726 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  x  e.  ( Base `  R )
)
4111, 4, 5, 14dvrass 16781 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  Y  e.  U ) )  -> 
( ( x  .x.  y ) (/r `  R
) Y )  =  ( x  .x.  (
y (/r `  R ) Y ) ) )
4219, 40, 21, 22, 41syl13anc 1220 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( (
x  .x.  y )
(/r `  R ) Y )  =  ( x 
.x.  ( y (/r `  R ) Y ) ) )
4316ad2antrr 725 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( ( X  .x.  Y ) (/r `  R ) Y )  =  X )
4438, 42, 433eqtr3d 2482 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( x  .x.  ( y (/r `  R
) Y ) )  =  X )
45 oveq2 6098 . . . . . . . . 9  |-  ( z  =  ( y (/r `  R ) Y )  ->  ( x  .x.  z )  =  ( x  .x.  ( y (/r `  R ) Y ) ) )
4645eqeq1d 2450 . . . . . . . 8  |-  ( z  =  ( y (/r `  R ) Y )  ->  ( ( x 
.x.  z )  =  X  <->  ( x  .x.  ( y (/r `  R
) Y ) )  =  X ) )
4746rspcev 3072 . . . . . . 7  |-  ( ( ( y (/r `  R
) Y )  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  (
y (/r `  R ) Y ) )  =  X )  ->  E. z  e.  ( ( Base `  R
)  \  U )
( x  .x.  z
)  =  X )
4836, 44, 47syl2anc 661 . . . . . 6  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  E. z  e.  ( ( Base `  R
)  \  U )
( x  .x.  z
)  =  X )
4948rexlimdvaa 2841 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  /\  x  e.  (
( Base `  R )  \  U ) )  -> 
( E. y  e.  ( ( Base `  R
)  \  U )
( x  .x.  y
)  =  ( X 
.x.  Y )  ->  E. z  e.  (
( Base `  R )  \  U ) ( x 
.x.  z )  =  X ) )
5049reximdva 2827 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  ( E. x  e.  (
( Base `  R )  \  U ) E. y  e.  ( ( Base `  R
)  \  U )
( x  .x.  y
)  =  ( X 
.x.  Y )  ->  E. x  e.  (
( Base `  R )  \  U ) E. z  e.  ( ( Base `  R
)  \  U )
( x  .x.  z
)  =  X ) )
5118, 50orim12d 834 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  (
( ( X  .x.  Y )  e.  U  \/  E. x  e.  ( ( Base `  R
)  \  U ) E. y  e.  (
( Base `  R )  \  U ) ( x 
.x.  y )  =  ( X  .x.  Y
) )  ->  ( X  e.  U  \/  E. x  e.  ( (
Base `  R )  \  U ) E. z  e.  ( ( Base `  R
)  \  U )
( x  .x.  z
)  =  X ) ) )
5211, 4unitcl 16750 . . . . . 6  |-  ( Y  e.  U  ->  Y  e.  ( Base `  R
) )
53523ad2ant3 1011 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  Y  e.  ( Base `  R
) )
5411, 14rngcl 16657 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  R
)  /\  Y  e.  ( Base `  R )
)  ->  ( X  .x.  Y )  e.  (
Base `  R )
)
552, 13, 53, 54syl3anc 1218 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  ( X  .x.  Y )  e.  ( Base `  R
) )
56 eqid 2442 . . . . 5  |-  ( (
Base `  R )  \  U )  =  ( ( Base `  R
)  \  U )
5711, 4, 10, 56, 14isnirred 16791 . . . 4  |-  ( ( X  .x.  Y )  e.  ( Base `  R
)  ->  ( -.  ( X  .x.  Y )  e.  I  <->  ( ( X  .x.  Y )  e.  U  \/  E. x  e.  ( ( Base `  R
)  \  U ) E. y  e.  (
( Base `  R )  \  U ) ( x 
.x.  y )  =  ( X  .x.  Y
) ) ) )
5855, 57syl 16 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  ( -.  ( X  .x.  Y
)  e.  I  <->  ( ( X  .x.  Y )  e.  U  \/  E. x  e.  ( ( Base `  R
)  \  U ) E. y  e.  (
( Base `  R )  \  U ) ( x 
.x.  y )  =  ( X  .x.  Y
) ) ) )
5911, 4, 10, 56, 14isnirred 16791 . . . 4  |-  ( X  e.  ( Base `  R
)  ->  ( -.  X  e.  I  <->  ( X  e.  U  \/  E. x  e.  ( ( Base `  R
)  \  U ) E. z  e.  (
( Base `  R )  \  U ) ( x 
.x.  z )  =  X ) ) )
6013, 59syl 16 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  ( -.  X  e.  I  <->  ( X  e.  U  \/  E. x  e.  ( (
Base `  R )  \  U ) E. z  e.  ( ( Base `  R
)  \  U )
( x  .x.  z
)  =  X ) ) )
6151, 58, 603imtr4d 268 . 2  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  ( -.  ( X  .x.  Y
)  e.  I  ->  -.  X  e.  I
) )
621, 61mt4d 138 1  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  ( X  .x.  Y )  e.  I )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   E.wrex 2715    \ cdif 3324   ` cfv 5417  (class class class)co 6090   Basecbs 14173   .rcmulr 14238   Ringcrg 16644  Unitcui 16730  Irredcir 16731  /rcdvr 16773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-tpos 6744  df-recs 6831  df-rdg 6865  df-er 7100  df-en 7310  df-dom 7311  df-sdom 7312  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-nn 10322  df-2 10379  df-3 10380  df-ndx 14176  df-slot 14177  df-base 14178  df-sets 14179  df-ress 14180  df-plusg 14250  df-mulr 14251  df-0g 14379  df-mnd 15414  df-grp 15544  df-minusg 15545  df-mgp 16591  df-ur 16603  df-rng 16646  df-oppr 16714  df-dvdsr 16732  df-unit 16733  df-irred 16734  df-invr 16763  df-dvr 16774
This theorem is referenced by:  irredlmul  16799  irredneg  16801
  Copyright terms: Public domain W3C validator