Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem5 Structured version   Unicode version

Theorem irrapxlem5 29120
Description: Lemma for irrapx1 29122. Switching to real intervals and fraction syntax. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
irrapxlem5  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  E. x  e.  QQ  ( 0  < 
x  /\  ( abs `  ( x  -  A
) )  <  B  /\  ( abs `  (
x  -  A ) )  <  ( (denom `  x ) ^ -u 2
) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem irrapxlem5
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 461 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  B  e.  RR+ )
21rpreccld 11029 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  (
1  /  B )  e.  RR+ )
32rprege0d 11026 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  (
( 1  /  B
)  e.  RR  /\  0  <_  ( 1  /  B ) ) )
4 flge0nn0 11658 . . . 4  |-  ( ( ( 1  /  B
)  e.  RR  /\  0  <_  ( 1  /  B ) )  -> 
( |_ `  (
1  /  B ) )  e.  NN0 )
5 nn0p1nn 10611 . . . 4  |-  ( ( |_ `  ( 1  /  B ) )  e.  NN0  ->  ( ( |_ `  ( 1  /  B ) )  +  1 )  e.  NN )
63, 4, 53syl 20 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  (
( |_ `  (
1  /  B ) )  +  1 )  e.  NN )
7 irrapxlem4 29119 . . 3  |-  ( ( A  e.  RR+  /\  (
( |_ `  (
1  /  B ) )  +  1 )  e.  NN )  ->  E. a  e.  NN  E. b  e.  NN  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )
86, 7syldan 470 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  E. a  e.  NN  E. b  e.  NN  ( abs `  (
( A  x.  a
)  -  b ) )  <  ( 1  /  if ( a  <_  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  ( ( |_ `  (
1  /  B ) )  +  1 ) ,  a ) ) )
9 simplrr 760 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
b  e.  NN )
10 nnq 10958 . . . . . . 7  |-  ( b  e.  NN  ->  b  e.  QQ )
119, 10syl 16 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
b  e.  QQ )
12 simplrl 759 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  e.  NN )
13 nnq 10958 . . . . . . 7  |-  ( a  e.  NN  ->  a  e.  QQ )
1412, 13syl 16 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  e.  QQ )
1512nnne0d 10358 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  =/=  0 )
16 qdivcl 10966 . . . . . 6  |-  ( ( b  e.  QQ  /\  a  e.  QQ  /\  a  =/=  0 )  ->  (
b  /  a )  e.  QQ )
1711, 14, 15, 16syl3anc 1218 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( b  /  a
)  e.  QQ )
189nnrpd 11018 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
b  e.  RR+ )
1912nnrpd 11018 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  e.  RR+ )
2018, 19rpdivcld 11036 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( b  /  a
)  e.  RR+ )
2120rpgt0d 11022 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
0  <  ( b  /  a ) )
2212nnred 10329 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  e.  RR )
2312nnnn0d 10628 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  e.  NN0 )
2423nn0ge0d 10631 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
0  <_  a )
2522, 24absidd 12901 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  a
)  =  a )
2625eqcomd 2443 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  =  ( abs `  a ) )
2726oveq1d 6101 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  ( abs `  ( ( b  /  a )  -  A ) ) )  =  ( ( abs `  a )  x.  ( abs `  ( ( b  /  a )  -  A ) ) ) )
2812nncnd 10330 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  e.  CC )
29 qre 10950 . . . . . . . . . . . . 13  |-  ( ( b  /  a )  e.  QQ  ->  (
b  /  a )  e.  RR )
3017, 29syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( b  /  a
)  e.  RR )
31 rpre 10989 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  A  e.  RR )
3231ad3antrrr 729 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  A  e.  RR )
3330, 32resubcld 9768 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( b  / 
a )  -  A
)  e.  RR )
3433recnd 9404 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( b  / 
a )  -  A
)  e.  CC )
3528, 34absmuld 12932 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
a  x.  ( ( b  /  a )  -  A ) ) )  =  ( ( abs `  a )  x.  ( abs `  (
( b  /  a
)  -  A ) ) ) )
3627, 35eqtr4d 2473 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  ( abs `  ( ( b  /  a )  -  A ) ) )  =  ( abs `  (
a  x.  ( ( b  /  a )  -  A ) ) ) )
37 qcn 10959 . . . . . . . . . . . 12  |-  ( ( b  /  a )  e.  QQ  ->  (
b  /  a )  e.  CC )
3817, 37syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( b  /  a
)  e.  CC )
39 rpcn 10991 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  A  e.  CC )
4039ad3antrrr 729 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  A  e.  CC )
4128, 38, 40subdid 9792 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  (
( b  /  a
)  -  A ) )  =  ( ( a  x.  ( b  /  a ) )  -  ( a  x.  A ) ) )
429nncnd 10330 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
b  e.  CC )
4342, 28, 15divcan2d 10101 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  (
b  /  a ) )  =  b )
4428, 40mulcomd 9399 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  A
)  =  ( A  x.  a ) )
4543, 44oveq12d 6104 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( a  x.  ( b  /  a
) )  -  (
a  x.  A ) )  =  ( b  -  ( A  x.  a ) ) )
4641, 45eqtrd 2470 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  (
( b  /  a
)  -  A ) )  =  ( b  -  ( A  x.  a ) ) )
4746fveq2d 5690 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
a  x.  ( ( b  /  a )  -  A ) ) )  =  ( abs `  ( b  -  ( A  x.  a )
) ) )
4832, 22remulcld 9406 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( A  x.  a
)  e.  RR )
4948recnd 9404 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( A  x.  a
)  e.  CC )
5042, 49abssubd 12931 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
b  -  ( A  x.  a ) ) )  =  ( abs `  ( ( A  x.  a )  -  b
) ) )
5136, 47, 503eqtrd 2474 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  ( abs `  ( ( b  /  a )  -  A ) ) )  =  ( abs `  (
( A  x.  a
)  -  b ) ) )
529nnred 10329 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
b  e.  RR )
5348, 52resubcld 9768 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( A  x.  a )  -  b
)  e.  RR )
5453recnd 9404 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( A  x.  a )  -  b
)  e.  CC )
5554abscld 12914 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( A  x.  a
)  -  b ) )  e.  RR )
56 simpllr 758 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  B  e.  RR+ )
5756rprecred 11030 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  B
)  e.  RR )
5856rpreccld 11029 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  B
)  e.  RR+ )
5958rpge0d 11023 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
0  <_  ( 1  /  B ) )
6057, 59, 4syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( |_ `  (
1  /  B ) )  e.  NN0 )
6160, 5syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( |_ `  ( 1  /  B
) )  +  1 )  e.  NN )
6261nnrpd 11018 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( |_ `  ( 1  /  B
) )  +  1 )  e.  RR+ )
63 ifcl 3826 . . . . . . . . . 10  |-  ( ( ( ( |_ `  ( 1  /  B
) )  +  1 )  e.  RR+  /\  a  e.  RR+ )  ->  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a )  e.  RR+ )
6462, 19, 63syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a )  e.  RR+ )
6564rprecred 11030 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )  e.  RR )
6656rpred 11019 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  B  e.  RR )
6722, 66remulcld 9406 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  B
)  e.  RR )
68 simpr 461 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( A  x.  a
)  -  b ) )  <  ( 1  /  if ( a  <_  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  ( ( |_ `  (
1  /  B ) )  +  1 ) ,  a ) ) )
6958rprecred 11030 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  (
1  /  B ) )  e.  RR )
7061nnred 10329 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( |_ `  ( 1  /  B
) )  +  1 )  e.  RR )
71 ifcl 3826 . . . . . . . . . . . 12  |-  ( ( ( ( |_ `  ( 1  /  B
) )  +  1 )  e.  RR  /\  a  e.  RR )  ->  if ( a  <_ 
( ( |_ `  ( 1  /  B
) )  +  1 ) ,  ( ( |_ `  ( 1  /  B ) )  +  1 ) ,  a )  e.  RR )
7270, 22, 71syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a )  e.  RR )
73 fllep1 11643 . . . . . . . . . . . 12  |-  ( ( 1  /  B )  e.  RR  ->  (
1  /  B )  <_  ( ( |_
`  ( 1  /  B ) )  +  1 ) )
7457, 73syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  B
)  <_  ( ( |_ `  ( 1  /  B ) )  +  1 ) )
75 max2 11151 . . . . . . . . . . . 12  |-  ( ( a  e.  RR  /\  ( ( |_ `  ( 1  /  B
) )  +  1 )  e.  RR )  ->  ( ( |_
`  ( 1  /  B ) )  +  1 )  <_  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )
7622, 70, 75syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( |_ `  ( 1  /  B
) )  +  1 )  <_  if (
a  <_  ( ( |_ `  ( 1  /  B ) )  +  1 ) ,  ( ( |_ `  (
1  /  B ) )  +  1 ) ,  a ) )
7757, 70, 72, 74, 76letrd 9520 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  B
)  <_  if (
a  <_  ( ( |_ `  ( 1  /  B ) )  +  1 ) ,  ( ( |_ `  (
1  /  B ) )  +  1 ) ,  a ) )
7858, 64lerecd 11038 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( 1  /  B )  <_  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a )  <->  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )  <_  (
1  /  ( 1  /  B ) ) ) )
7977, 78mpbid 210 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )  <_  (
1  /  ( 1  /  B ) ) )
8066recnd 9404 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  B  e.  CC )
8156rpne0d 11024 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  B  =/=  0 )
8280, 81recrecd 10096 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  (
1  /  B ) )  =  B )
8380mulid2d 9396 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  x.  B
)  =  B )
8482, 83eqtr4d 2473 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  (
1  /  B ) )  =  ( 1  x.  B ) )
8512nnge1d 10356 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
1  <_  a )
86 1re 9377 . . . . . . . . . . . . 13  |-  1  e.  RR
8786a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
1  e.  RR )
8887, 22, 56lemul1d 11058 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  <_  a  <->  ( 1  x.  B )  <_  ( a  x.  B ) ) )
8985, 88mpbid 210 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  x.  B
)  <_  ( a  x.  B ) )
9084, 89eqbrtrd 4307 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  (
1  /  B ) )  <_  ( a  x.  B ) )
9165, 69, 67, 79, 90letrd 9520 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )  <_  (
a  x.  B ) )
9255, 65, 67, 68, 91ltletrd 9523 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( A  x.  a
)  -  b ) )  <  ( a  x.  B ) )
9351, 92eqbrtrd 4307 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  ( abs `  ( ( b  /  a )  -  A ) ) )  <  ( a  x.  B ) )
9434abscld 12914 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( b  /  a
)  -  A ) )  e.  RR )
9512nngt0d 10357 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
0  <  a )
96 ltmul2 10172 . . . . . . 7  |-  ( ( ( abs `  (
( b  /  a
)  -  A ) )  e.  RR  /\  B  e.  RR  /\  (
a  e.  RR  /\  0  <  a ) )  ->  ( ( abs `  ( ( b  / 
a )  -  A
) )  <  B  <->  ( a  x.  ( abs `  ( ( b  / 
a )  -  A
) ) )  < 
( a  x.  B
) ) )
9794, 66, 22, 95, 96syl112anc 1222 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( abs `  (
( b  /  a
)  -  A ) )  <  B  <->  ( a  x.  ( abs `  (
( b  /  a
)  -  A ) ) )  <  (
a  x.  B ) ) )
9893, 97mpbird 232 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( b  /  a
)  -  A ) )  <  B )
9922, 22remulcld 9406 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  a
)  e.  RR )
10022, 15msqgt0d 9899 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
0  <  ( a  x.  a ) )
101100gt0ne0d 9896 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  a
)  =/=  0 )
10299, 101rereccld 10150 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  (
a  x.  a ) )  e.  RR )
103 qdencl 13811 . . . . . . . . . . 11  |-  ( ( b  /  a )  e.  QQ  ->  (denom `  ( b  /  a
) )  e.  NN )
10417, 103syl 16 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
(denom `  ( b  /  a ) )  e.  NN )
105104nnred 10329 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
(denom `  ( b  /  a ) )  e.  RR )
106105, 105remulcld 9406 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( (denom `  (
b  /  a ) )  x.  (denom `  ( b  /  a
) ) )  e.  RR )
107104nnne0d 10358 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
(denom `  ( b  /  a ) )  =/=  0 )
108105, 107msqgt0d 9899 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
0  <  ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) ) )
109108gt0ne0d 9896 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( (denom `  (
b  /  a ) )  x.  (denom `  ( b  /  a
) ) )  =/=  0 )
110106, 109rereccld 10150 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  (
(denom `  ( b  /  a ) )  x.  (denom `  (
b  /  a ) ) ) )  e.  RR )
11122, 15rereccld 10150 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  a
)  e.  RR )
112 max1 11149 . . . . . . . . . . . 12  |-  ( ( a  e.  RR  /\  ( ( |_ `  ( 1  /  B
) )  +  1 )  e.  RR )  ->  a  <_  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )
11322, 70, 112syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  <_  if (
a  <_  ( ( |_ `  ( 1  /  B ) )  +  1 ) ,  ( ( |_ `  (
1  /  B ) )  +  1 ) ,  a ) )
11419, 64lerecd 11038 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  <_  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a )  <->  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )  <_  (
1  /  a ) ) )
115113, 114mpbid 210 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )  <_  (
1  /  a ) )
11655, 65, 111, 68, 115ltletrd 9523 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( A  x.  a
)  -  b ) )  <  ( 1  /  a ) )
11728, 28, 28, 15, 15divdiv1d 10130 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( a  / 
a )  /  a
)  =  ( a  /  ( a  x.  a ) ) )
11828, 15dividd 10097 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  /  a
)  =  1 )
119118oveq1d 6101 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( a  / 
a )  /  a
)  =  ( 1  /  a ) )
12099recnd 9404 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  a
)  e.  CC )
12128, 120, 101divrecd 10102 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  /  (
a  x.  a ) )  =  ( a  x.  ( 1  / 
( a  x.  a
) ) ) )
122117, 119, 1213eqtr3rd 2479 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  (
1  /  ( a  x.  a ) ) )  =  ( 1  /  a ) )
123116, 51, 1223brtr4d 4317 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  ( abs `  ( ( b  /  a )  -  A ) ) )  <  ( a  x.  ( 1  /  (
a  x.  a ) ) ) )
124 ltmul2 10172 . . . . . . . . 9  |-  ( ( ( abs `  (
( b  /  a
)  -  A ) )  e.  RR  /\  ( 1  /  (
a  x.  a ) )  e.  RR  /\  ( a  e.  RR  /\  0  <  a ) )  ->  ( ( abs `  ( ( b  /  a )  -  A ) )  < 
( 1  /  (
a  x.  a ) )  <->  ( a  x.  ( abs `  (
( b  /  a
)  -  A ) ) )  <  (
a  x.  ( 1  /  ( a  x.  a ) ) ) ) )
12594, 102, 22, 95, 124syl112anc 1222 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( abs `  (
( b  /  a
)  -  A ) )  <  ( 1  /  ( a  x.  a ) )  <->  ( a  x.  ( abs `  (
( b  /  a
)  -  A ) ) )  <  (
a  x.  ( 1  /  ( a  x.  a ) ) ) ) )
126123, 125mpbird 232 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( b  /  a
)  -  A ) )  <  ( 1  /  ( a  x.  a ) ) )
1279nnzd 10738 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
b  e.  ZZ )
128 divdenle 13819 . . . . . . . . . 10  |-  ( ( b  e.  ZZ  /\  a  e.  NN )  ->  (denom `  ( b  /  a ) )  <_  a )
129127, 12, 128syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
(denom `  ( b  /  a ) )  <_  a )
130104nnnn0d 10628 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
(denom `  ( b  /  a ) )  e.  NN0 )
131130nn0ge0d 10631 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
0  <_  (denom `  (
b  /  a ) ) )
132 le2msq 10224 . . . . . . . . . 10  |-  ( ( ( (denom `  (
b  /  a ) )  e.  RR  /\  0  <_  (denom `  (
b  /  a ) ) )  /\  (
a  e.  RR  /\  0  <_  a ) )  ->  ( (denom `  ( b  /  a
) )  <_  a  <->  ( (denom `  ( b  /  a ) )  x.  (denom `  (
b  /  a ) ) )  <_  (
a  x.  a ) ) )
133105, 131, 22, 24, 132syl22anc 1219 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( (denom `  (
b  /  a ) )  <_  a  <->  ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) )  <_ 
( a  x.  a
) ) )
134129, 133mpbid 210 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( (denom `  (
b  /  a ) )  x.  (denom `  ( b  /  a
) ) )  <_ 
( a  x.  a
) )
135 lerec 10206 . . . . . . . . 9  |-  ( ( ( ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) )  e.  RR  /\  0  < 
( (denom `  (
b  /  a ) )  x.  (denom `  ( b  /  a
) ) ) )  /\  ( ( a  x.  a )  e.  RR  /\  0  < 
( a  x.  a
) ) )  -> 
( ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) )  <_ 
( a  x.  a
)  <->  ( 1  / 
( a  x.  a
) )  <_  (
1  /  ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) ) ) ) )
136106, 108, 99, 100, 135syl22anc 1219 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) )  <_ 
( a  x.  a
)  <->  ( 1  / 
( a  x.  a
) )  <_  (
1  /  ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) ) ) ) )
137134, 136mpbid 210 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  (
a  x.  a ) )  <_  ( 1  /  ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) ) ) )
13894, 102, 110, 126, 137ltletrd 9523 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( b  /  a
)  -  A ) )  <  ( 1  /  ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) ) ) )
139104nncnd 10330 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
(denom `  ( b  /  a ) )  e.  CC )
140 2nn0 10588 . . . . . . . . 9  |-  2  e.  NN0
141140a1i 11 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
2  e.  NN0 )
142 expneg 11865 . . . . . . . 8  |-  ( ( (denom `  ( b  /  a ) )  e.  CC  /\  2  e.  NN0 )  ->  (
(denom `  ( b  /  a ) ) ^ -u 2 )  =  ( 1  / 
( (denom `  (
b  /  a ) ) ^ 2 ) ) )
143139, 141, 142syl2anc 661 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( (denom `  (
b  /  a ) ) ^ -u 2
)  =  ( 1  /  ( (denom `  ( b  /  a
) ) ^ 2 ) ) )
144139sqvald 11997 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( (denom `  (
b  /  a ) ) ^ 2 )  =  ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) ) )
145144oveq2d 6102 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  (
(denom `  ( b  /  a ) ) ^ 2 ) )  =  ( 1  / 
( (denom `  (
b  /  a ) )  x.  (denom `  ( b  /  a
) ) ) ) )
146143, 145eqtrd 2470 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( (denom `  (
b  /  a ) ) ^ -u 2
)  =  ( 1  /  ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) ) ) )
147138, 146breqtrrd 4313 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( b  /  a
)  -  A ) )  <  ( (denom `  ( b  /  a
) ) ^ -u 2
) )
148 breq2 4291 . . . . . . 7  |-  ( x  =  ( b  / 
a )  ->  (
0  <  x  <->  0  <  ( b  /  a ) ) )
149 oveq1 6093 . . . . . . . . 9  |-  ( x  =  ( b  / 
a )  ->  (
x  -  A )  =  ( ( b  /  a )  -  A ) )
150149fveq2d 5690 . . . . . . . 8  |-  ( x  =  ( b  / 
a )  ->  ( abs `  ( x  -  A ) )  =  ( abs `  (
( b  /  a
)  -  A ) ) )
151150breq1d 4297 . . . . . . 7  |-  ( x  =  ( b  / 
a )  ->  (
( abs `  (
x  -  A ) )  <  B  <->  ( abs `  ( ( b  / 
a )  -  A
) )  <  B
) )
152 fveq2 5686 . . . . . . . . 9  |-  ( x  =  ( b  / 
a )  ->  (denom `  x )  =  (denom `  ( b  /  a
) ) )
153152oveq1d 6101 . . . . . . . 8  |-  ( x  =  ( b  / 
a )  ->  (
(denom `  x ) ^ -u 2 )  =  ( (denom `  (
b  /  a ) ) ^ -u 2
) )
154150, 153breq12d 4300 . . . . . . 7  |-  ( x  =  ( b  / 
a )  ->  (
( abs `  (
x  -  A ) )  <  ( (denom `  x ) ^ -u 2
)  <->  ( abs `  (
( b  /  a
)  -  A ) )  <  ( (denom `  ( b  /  a
) ) ^ -u 2
) ) )
155148, 151, 1543anbi123d 1289 . . . . . 6  |-  ( x  =  ( b  / 
a )  ->  (
( 0  <  x  /\  ( abs `  (
x  -  A ) )  <  B  /\  ( abs `  ( x  -  A ) )  <  ( (denom `  x ) ^ -u 2
) )  <->  ( 0  <  ( b  / 
a )  /\  ( abs `  ( ( b  /  a )  -  A ) )  < 
B  /\  ( abs `  ( ( b  / 
a )  -  A
) )  <  (
(denom `  ( b  /  a ) ) ^ -u 2 ) ) ) )
156155rspcev 3068 . . . . 5  |-  ( ( ( b  /  a
)  e.  QQ  /\  ( 0  <  (
b  /  a )  /\  ( abs `  (
( b  /  a
)  -  A ) )  <  B  /\  ( abs `  ( ( b  /  a )  -  A ) )  <  ( (denom `  ( b  /  a
) ) ^ -u 2
) ) )  ->  E. x  e.  QQ  ( 0  <  x  /\  ( abs `  (
x  -  A ) )  <  B  /\  ( abs `  ( x  -  A ) )  <  ( (denom `  x ) ^ -u 2
) ) )
15717, 21, 98, 147, 156syl13anc 1220 . . . 4  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  E. x  e.  QQ  ( 0  <  x  /\  ( abs `  (
x  -  A ) )  <  B  /\  ( abs `  ( x  -  A ) )  <  ( (denom `  x ) ^ -u 2
) ) )
158157ex 434 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  ->  ( ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )  ->  E. x  e.  QQ  ( 0  < 
x  /\  ( abs `  ( x  -  A
) )  <  B  /\  ( abs `  (
x  -  A ) )  <  ( (denom `  x ) ^ -u 2
) ) ) )
159158rexlimdvva 2843 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( E. a  e.  NN  E. b  e.  NN  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )  ->  E. x  e.  QQ  ( 0  < 
x  /\  ( abs `  ( x  -  A
) )  <  B  /\  ( abs `  (
x  -  A ) )  <  ( (denom `  x ) ^ -u 2
) ) ) )
1608, 159mpd 15 1  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  E. x  e.  QQ  ( 0  < 
x  /\  ( abs `  ( x  -  A
) )  <  B  /\  ( abs `  (
x  -  A ) )  <  ( (denom `  x ) ^ -u 2
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2601   E.wrex 2711   ifcif 3786   class class class wbr 4287   ` cfv 5413  (class class class)co 6086   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279    < clt 9410    <_ cle 9411    - cmin 9587   -ucneg 9588    / cdiv 9985   NNcn 10314   2c2 10363   NN0cn0 10571   ZZcz 10638   QQcq 10945   RR+crp 10983   |_cfl 11632   ^cexp 11857   abscabs 12715  denomcdenom 13804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-card 8101  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-q 10946  df-rp 10984  df-ico 11298  df-fz 11430  df-fl 11634  df-mod 11701  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-dvds 13528  df-gcd 13683  df-numer 13805  df-denom 13806
This theorem is referenced by:  irrapxlem6  29121
  Copyright terms: Public domain W3C validator