Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem3 Structured version   Unicode version

Theorem irrapxlem3 30364
Description: Lemma for irrapx1 30368. By subtraction, there is a multiple very close to an integer. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
irrapxlem3  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  E. x  e.  ( 1 ... B
) E. y  e. 
NN0  ( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  B ) )
Distinct variable groups:    x, A, y    x, B, y

Proof of Theorem irrapxlem3
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 irrapxlem2 30363 . 2  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  E. a  e.  ( 0 ... B
) E. b  e.  ( 0 ... B
) ( a  < 
b  /\  ( abs `  ( ( ( A  x.  a )  mod  1 )  -  (
( A  x.  b
)  mod  1 ) ) )  <  (
1  /  B ) ) )
2 1m1e0 10600 . . . . . . . . 9  |-  ( 1  -  1 )  =  0
3 elfzelz 11684 . . . . . . . . . . . . 13  |-  ( a  e.  ( 0 ... B )  ->  a  e.  ZZ )
43ad2antrl 727 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  -> 
a  e.  ZZ )
54zred 10962 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  -> 
a  e.  RR )
6 elfzelz 11684 . . . . . . . . . . . . 13  |-  ( b  e.  ( 0 ... B )  ->  b  e.  ZZ )
76ad2antll 728 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  -> 
b  e.  ZZ )
87zred 10962 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  -> 
b  e.  RR )
95, 8posdifd 10135 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  -> 
( a  <  b  <->  0  <  ( b  -  a ) ) )
109biimpa 484 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
0  <  ( b  -  a ) )
112, 10syl5eqbr 4480 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( 1  -  1 )  <  ( b  -  a ) )
12 1z 10890 . . . . . . . . 9  |-  1  e.  ZZ
13 simplrr 760 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
b  e.  ( 0 ... B ) )
1413, 6syl 16 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
b  e.  ZZ )
15 simplrl 759 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
a  e.  ( 0 ... B ) )
1615, 3syl 16 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
a  e.  ZZ )
1714, 16zsubcld 10967 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( b  -  a
)  e.  ZZ )
18 zlem1lt 10910 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  ( b  -  a
)  e.  ZZ )  ->  ( 1  <_ 
( b  -  a
)  <->  ( 1  -  1 )  <  (
b  -  a ) ) )
1912, 17, 18sylancr 663 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( 1  <_  (
b  -  a )  <-> 
( 1  -  1 )  <  ( b  -  a ) ) )
2011, 19mpbird 232 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
1  <_  ( b  -  a ) )
2114zred 10962 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
b  e.  RR )
2216zred 10962 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
a  e.  RR )
2321, 22resubcld 9983 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( b  -  a
)  e.  RR )
24 0re 9592 . . . . . . . . . 10  |-  0  e.  RR
2524a1i 11 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
0  e.  RR )
2621, 25resubcld 9983 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( b  -  0 )  e.  RR )
27 simpllr 758 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  ->  B  e.  NN )
2827nnred 10547 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  ->  B  e.  RR )
29 elfzle1 11685 . . . . . . . . . 10  |-  ( a  e.  ( 0 ... B )  ->  0  <_  a )
3015, 29syl 16 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
0  <_  a )
3125, 22, 21, 30lesub2dd 10165 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( b  -  a
)  <_  ( b  -  0 ) )
3221recnd 9618 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
b  e.  CC )
3332subid1d 9915 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( b  -  0 )  =  b )
34 elfzle2 11686 . . . . . . . . . 10  |-  ( b  e.  ( 0 ... B )  ->  b  <_  B )
3513, 34syl 16 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
b  <_  B )
3633, 35eqbrtrd 4467 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( b  -  0 )  <_  B )
3723, 26, 28, 31, 36letrd 9734 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( b  -  a
)  <_  B )
3812a1i 11 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
1  e.  ZZ )
3927nnzd 10961 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  ->  B  e.  ZZ )
40 elfz 11674 . . . . . . . 8  |-  ( ( ( b  -  a
)  e.  ZZ  /\  1  e.  ZZ  /\  B  e.  ZZ )  ->  (
( b  -  a
)  e.  ( 1 ... B )  <->  ( 1  <_  ( b  -  a )  /\  (
b  -  a )  <_  B ) ) )
4117, 38, 39, 40syl3anc 1228 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( b  -  a )  e.  ( 1 ... B )  <-> 
( 1  <_  (
b  -  a )  /\  ( b  -  a )  <_  B
) ) )
4220, 37, 41mpbir2and 920 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( b  -  a
)  e.  ( 1 ... B ) )
4342adantrr 716 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  ( a  <  b  /\  ( abs `  (
( ( A  x.  a )  mod  1
)  -  ( ( A  x.  b )  mod  1 ) ) )  <  ( 1  /  B ) ) )  ->  ( b  -  a )  e.  ( 1 ... B
) )
44 rpre 11222 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  A  e.  RR )
4544ad3antrrr 729 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  ->  A  e.  RR )
4645, 22remulcld 9620 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( A  x.  a
)  e.  RR )
4745, 21remulcld 9620 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( A  x.  b
)  e.  RR )
48 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
a  <  b )
4922, 21, 48ltled 9728 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
a  <_  b )
50 rpgt0 11227 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  0  < 
A )
5150ad3antrrr 729 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
0  <  A )
52 lemul2 10391 . . . . . . . . . 10  |-  ( ( a  e.  RR  /\  b  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( a  <_  b  <->  ( A  x.  a )  <_  ( A  x.  b ) ) )
5322, 21, 45, 51, 52syl112anc 1232 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( a  <_  b  <->  ( A  x.  a )  <_  ( A  x.  b ) ) )
5449, 53mpbid 210 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( A  x.  a
)  <_  ( A  x.  b ) )
55 flword2 11913 . . . . . . . 8  |-  ( ( ( A  x.  a
)  e.  RR  /\  ( A  x.  b
)  e.  RR  /\  ( A  x.  a
)  <_  ( A  x.  b ) )  -> 
( |_ `  ( A  x.  b )
)  e.  ( ZZ>= `  ( |_ `  ( A  x.  a ) ) ) )
5646, 47, 54, 55syl3anc 1228 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( |_ `  ( A  x.  b )
)  e.  ( ZZ>= `  ( |_ `  ( A  x.  a ) ) ) )
57 uznn0sub 11109 . . . . . . 7  |-  ( ( |_ `  ( A  x.  b ) )  e.  ( ZZ>= `  ( |_ `  ( A  x.  a ) ) )  ->  ( ( |_
`  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a ) ) )  e.  NN0 )
5856, 57syl 16 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( |_ `  ( A  x.  b
) )  -  ( |_ `  ( A  x.  a ) ) )  e.  NN0 )
5958adantrr 716 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  ( a  <  b  /\  ( abs `  (
( ( A  x.  a )  mod  1
)  -  ( ( A  x.  b )  mod  1 ) ) )  <  ( 1  /  B ) ) )  ->  ( ( |_ `  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a ) ) )  e.  NN0 )
6045recnd 9618 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  ->  A  e.  CC )
6122recnd 9618 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
a  e.  CC )
6260, 32, 61subdid 10008 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( A  x.  (
b  -  a ) )  =  ( ( A  x.  b )  -  ( A  x.  a ) ) )
6362oveq1d 6297 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  ( b  -  a
) )  -  (
( |_ `  ( A  x.  b )
)  -  ( |_
`  ( A  x.  a ) ) ) )  =  ( ( ( A  x.  b
)  -  ( A  x.  a ) )  -  ( ( |_
`  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a ) ) ) ) )
6447recnd 9618 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( A  x.  b
)  e.  CC )
6546recnd 9618 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( A  x.  a
)  e.  CC )
6647flcld 11899 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( |_ `  ( A  x.  b )
)  e.  ZZ )
6766zcnd 10963 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( |_ `  ( A  x.  b )
)  e.  CC )
6846flcld 11899 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( |_ `  ( A  x.  a )
)  e.  ZZ )
6968zcnd 10963 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( |_ `  ( A  x.  a )
)  e.  CC )
7064, 65, 67, 69sub4d 9975 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( ( A  x.  b )  -  ( A  x.  a
) )  -  (
( |_ `  ( A  x.  b )
)  -  ( |_
`  ( A  x.  a ) ) ) )  =  ( ( ( A  x.  b
)  -  ( |_
`  ( A  x.  b ) ) )  -  ( ( A  x.  a )  -  ( |_ `  ( A  x.  a ) ) ) ) )
71 modfrac 11973 . . . . . . . . . . . . . 14  |-  ( ( A  x.  b )  e.  RR  ->  (
( A  x.  b
)  mod  1 )  =  ( ( A  x.  b )  -  ( |_ `  ( A  x.  b ) ) ) )
7247, 71syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  b )  mod  1
)  =  ( ( A  x.  b )  -  ( |_ `  ( A  x.  b
) ) ) )
7372eqcomd 2475 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  b )  -  ( |_ `  ( A  x.  b ) ) )  =  ( ( A  x.  b )  mod  1 ) )
74 modfrac 11973 . . . . . . . . . . . . . 14  |-  ( ( A  x.  a )  e.  RR  ->  (
( A  x.  a
)  mod  1 )  =  ( ( A  x.  a )  -  ( |_ `  ( A  x.  a ) ) ) )
7546, 74syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  a )  mod  1
)  =  ( ( A  x.  a )  -  ( |_ `  ( A  x.  a
) ) ) )
7675eqcomd 2475 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  a )  -  ( |_ `  ( A  x.  a ) ) )  =  ( ( A  x.  a )  mod  1 ) )
7773, 76oveq12d 6300 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( ( A  x.  b )  -  ( |_ `  ( A  x.  b ) ) )  -  ( ( A  x.  a )  -  ( |_ `  ( A  x.  a
) ) ) )  =  ( ( ( A  x.  b )  mod  1 )  -  ( ( A  x.  a )  mod  1
) ) )
7863, 70, 773eqtrd 2512 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  ( b  -  a
) )  -  (
( |_ `  ( A  x.  b )
)  -  ( |_
`  ( A  x.  a ) ) ) )  =  ( ( ( A  x.  b
)  mod  1 )  -  ( ( A  x.  a )  mod  1 ) ) )
7978fveq2d 5868 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( abs `  (
( A  x.  (
b  -  a ) )  -  ( ( |_ `  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a
) ) ) ) )  =  ( abs `  ( ( ( A  x.  b )  mod  1 )  -  (
( A  x.  a
)  mod  1 ) ) ) )
80 1rp 11220 . . . . . . . . . . . . 13  |-  1  e.  RR+
8180a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
1  e.  RR+ )
8247, 81modcld 11966 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  b )  mod  1
)  e.  RR )
8382recnd 9618 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  b )  mod  1
)  e.  CC )
8446, 81modcld 11966 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  a )  mod  1
)  e.  RR )
8584recnd 9618 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  a )  mod  1
)  e.  CC )
8683, 85abssubd 13243 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( abs `  (
( ( A  x.  b )  mod  1
)  -  ( ( A  x.  a )  mod  1 ) ) )  =  ( abs `  ( ( ( A  x.  a )  mod  1 )  -  (
( A  x.  b
)  mod  1 ) ) ) )
8779, 86eqtr2d 2509 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( abs `  (
( ( A  x.  a )  mod  1
)  -  ( ( A  x.  b )  mod  1 ) ) )  =  ( abs `  ( ( A  x.  ( b  -  a
) )  -  (
( |_ `  ( A  x.  b )
)  -  ( |_
`  ( A  x.  a ) ) ) ) ) )
8887breq1d 4457 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( abs `  (
( ( A  x.  a )  mod  1
)  -  ( ( A  x.  b )  mod  1 ) ) )  <  ( 1  /  B )  <->  ( abs `  ( ( A  x.  ( b  -  a
) )  -  (
( |_ `  ( A  x.  b )
)  -  ( |_
`  ( A  x.  a ) ) ) ) )  <  (
1  /  B ) ) )
8988biimpd 207 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( abs `  (
( ( A  x.  a )  mod  1
)  -  ( ( A  x.  b )  mod  1 ) ) )  <  ( 1  /  B )  -> 
( abs `  (
( A  x.  (
b  -  a ) )  -  ( ( |_ `  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a
) ) ) ) )  <  ( 1  /  B ) ) )
9089impr 619 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  ( a  <  b  /\  ( abs `  (
( ( A  x.  a )  mod  1
)  -  ( ( A  x.  b )  mod  1 ) ) )  <  ( 1  /  B ) ) )  ->  ( abs `  ( ( A  x.  ( b  -  a
) )  -  (
( |_ `  ( A  x.  b )
)  -  ( |_
`  ( A  x.  a ) ) ) ) )  <  (
1  /  B ) )
91 oveq2 6290 . . . . . . . . 9  |-  ( x  =  ( b  -  a )  ->  ( A  x.  x )  =  ( A  x.  ( b  -  a
) ) )
9291oveq1d 6297 . . . . . . . 8  |-  ( x  =  ( b  -  a )  ->  (
( A  x.  x
)  -  y )  =  ( ( A  x.  ( b  -  a ) )  -  y ) )
9392fveq2d 5868 . . . . . . 7  |-  ( x  =  ( b  -  a )  ->  ( abs `  ( ( A  x.  x )  -  y ) )  =  ( abs `  (
( A  x.  (
b  -  a ) )  -  y ) ) )
9493breq1d 4457 . . . . . 6  |-  ( x  =  ( b  -  a )  ->  (
( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  B )  <->  ( abs `  ( ( A  x.  ( b  -  a
) )  -  y
) )  <  (
1  /  B ) ) )
95 oveq2 6290 . . . . . . . 8  |-  ( y  =  ( ( |_
`  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a ) ) )  ->  ( ( A  x.  ( b  -  a ) )  -  y )  =  ( ( A  x.  ( b  -  a
) )  -  (
( |_ `  ( A  x.  b )
)  -  ( |_
`  ( A  x.  a ) ) ) ) )
9695fveq2d 5868 . . . . . . 7  |-  ( y  =  ( ( |_
`  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a ) ) )  ->  ( abs `  ( ( A  x.  ( b  -  a
) )  -  y
) )  =  ( abs `  ( ( A  x.  ( b  -  a ) )  -  ( ( |_
`  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a ) ) ) ) ) )
9796breq1d 4457 . . . . . 6  |-  ( y  =  ( ( |_
`  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a ) ) )  ->  ( ( abs `  ( ( A  x.  ( b  -  a ) )  -  y ) )  < 
( 1  /  B
)  <->  ( abs `  (
( A  x.  (
b  -  a ) )  -  ( ( |_ `  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a
) ) ) ) )  <  ( 1  /  B ) ) )
9894, 97rspc2ev 3225 . . . . 5  |-  ( ( ( b  -  a
)  e.  ( 1 ... B )  /\  ( ( |_ `  ( A  x.  b
) )  -  ( |_ `  ( A  x.  a ) ) )  e.  NN0  /\  ( abs `  ( ( A  x.  ( b  -  a ) )  -  ( ( |_ `  ( A  x.  b
) )  -  ( |_ `  ( A  x.  a ) ) ) ) )  <  (
1  /  B ) )  ->  E. x  e.  ( 1 ... B
) E. y  e. 
NN0  ( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  B ) )
9943, 59, 90, 98syl3anc 1228 . . . 4  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  ( a  <  b  /\  ( abs `  (
( ( A  x.  a )  mod  1
)  -  ( ( A  x.  b )  mod  1 ) ) )  <  ( 1  /  B ) ) )  ->  E. x  e.  ( 1 ... B
) E. y  e. 
NN0  ( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  B ) )
10099ex 434 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  -> 
( ( a  < 
b  /\  ( abs `  ( ( ( A  x.  a )  mod  1 )  -  (
( A  x.  b
)  mod  1 ) ) )  <  (
1  /  B ) )  ->  E. x  e.  ( 1 ... B
) E. y  e. 
NN0  ( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  B ) ) )
101100rexlimdvva 2962 . 2  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  ( E. a  e.  (
0 ... B ) E. b  e.  ( 0 ... B ) ( a  <  b  /\  ( abs `  ( ( ( A  x.  a
)  mod  1 )  -  ( ( A  x.  b )  mod  1 ) ) )  <  ( 1  /  B ) )  ->  E. x  e.  (
1 ... B ) E. y  e.  NN0  ( abs `  ( ( A  x.  x )  -  y ) )  < 
( 1  /  B
) ) )
1021, 101mpd 15 1  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  E. x  e.  ( 1 ... B
) E. y  e. 
NN0  ( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   E.wrex 2815   class class class wbr 4447   ` cfv 5586  (class class class)co 6282   RRcr 9487   0cc0 9488   1c1 9489    x. cmul 9493    < clt 9624    <_ cle 9625    - cmin 9801    / cdiv 10202   NNcn 10532   NN0cn0 10791   ZZcz 10860   ZZ>=cuz 11078   RR+crp 11216   ...cfz 11668   |_cfl 11891    mod cmo 11960   abscabs 13026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-card 8316  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-rp 11217  df-ico 11531  df-fz 11669  df-fl 11893  df-mod 11961  df-seq 12072  df-exp 12131  df-hash 12370  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028
This theorem is referenced by:  irrapxlem4  30365
  Copyright terms: Public domain W3C validator