Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem2 Structured version   Unicode version

Theorem irrapxlem2 30963
Description: Lemma for irrapx1 30968. Two multiples in the same bucket means they are very close mod 1. (Contributed by Stefan O'Rear, 12-Sep-2014.)
Assertion
Ref Expression
irrapxlem2  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  E. x  e.  ( 0 ... B
) E. y  e.  ( 0 ... B
) ( x  < 
y  /\  ( abs `  ( ( ( A  x.  x )  mod  1 )  -  (
( A  x.  y
)  mod  1 ) ) )  <  (
1  /  B ) ) )
Distinct variable groups:    x, A, y    x, B, y

Proof of Theorem irrapxlem2
StepHypRef Expression
1 irrapxlem1 30962 . 2  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  E. x  e.  ( 0 ... B
) E. y  e.  ( 0 ... B
) ( x  < 
y  /\  ( |_ `  ( B  x.  (
( A  x.  x
)  mod  1 ) ) )  =  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) ) )
2 nnre 10563 . . . . . . . . . . . . . 14  |-  ( B  e.  NN  ->  B  e.  RR )
32ad3antlr 730 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  B  e.  RR )
4 rpre 11251 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR+  ->  A  e.  RR )
54ad3antrrr 729 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  A  e.  RR )
6 elfzelz 11713 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( 0 ... B )  ->  x  e.  ZZ )
76zred 10990 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( 0 ... B )  ->  x  e.  RR )
87ad2antlr 726 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  x  e.  RR )
95, 8remulcld 9641 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( A  x.  x )  e.  RR )
10 1rp 11249 . . . . . . . . . . . . . . 15  |-  1  e.  RR+
1110a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  1  e.  RR+ )
129, 11modcld 12005 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( A  x.  x
)  mod  1 )  e.  RR )
133, 12remulcld 9641 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( B  x.  ( ( A  x.  x )  mod  1 ) )  e.  RR )
14 intfrac 12014 . . . . . . . . . . . 12  |-  ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  e.  RR  ->  ( B  x.  ( ( A  x.  x )  mod  1 ) )  =  ( ( |_ `  ( B  x.  (
( A  x.  x
)  mod  1 ) ) )  +  ( ( B  x.  (
( A  x.  x
)  mod  1 ) )  mod  1 ) ) )
1513, 14syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( B  x.  ( ( A  x.  x )  mod  1 ) )  =  ( ( |_ `  ( B  x.  (
( A  x.  x
)  mod  1 ) ) )  +  ( ( B  x.  (
( A  x.  x
)  mod  1 ) )  mod  1 ) ) )
16 elfzelz 11713 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( 0 ... B )  ->  y  e.  ZZ )
1716zred 10990 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( 0 ... B )  ->  y  e.  RR )
1817adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  y  e.  RR )
195, 18remulcld 9641 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( A  x.  y )  e.  RR )
2019, 11modcld 12005 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( A  x.  y
)  mod  1 )  e.  RR )
213, 20remulcld 9641 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( B  x.  ( ( A  x.  y )  mod  1 ) )  e.  RR )
22 intfrac 12014 . . . . . . . . . . . 12  |-  ( ( B  x.  ( ( A  x.  y )  mod  1 ) )  e.  RR  ->  ( B  x.  ( ( A  x.  y )  mod  1 ) )  =  ( ( |_ `  ( B  x.  (
( A  x.  y
)  mod  1 ) ) )  +  ( ( B  x.  (
( A  x.  y
)  mod  1 ) )  mod  1 ) ) )
2321, 22syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( B  x.  ( ( A  x.  y )  mod  1 ) )  =  ( ( |_ `  ( B  x.  (
( A  x.  y
)  mod  1 ) ) )  +  ( ( B  x.  (
( A  x.  y
)  mod  1 ) )  mod  1 ) ) )
2415, 23oveq12d 6314 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( B  x.  (
( A  x.  x
)  mod  1 ) )  -  ( B  x.  ( ( A  x.  y )  mod  1 ) ) )  =  ( ( ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1 ) ) )  +  ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  mod  1 ) )  -  ( ( |_ `  ( B  x.  (
( A  x.  y
)  mod  1 ) ) )  +  ( ( B  x.  (
( A  x.  y
)  mod  1 ) )  mod  1 ) ) ) )
2524fveq2d 5876 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( abs `  ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  -  ( B  x.  (
( A  x.  y
)  mod  1 ) ) ) )  =  ( abs `  (
( ( |_ `  ( B  x.  (
( A  x.  x
)  mod  1 ) ) )  +  ( ( B  x.  (
( A  x.  x
)  mod  1 ) )  mod  1 ) )  -  ( ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) )  +  ( ( B  x.  ( ( A  x.  y )  mod  1 ) )  mod  1 ) ) ) ) )
2625adantr 465 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B
) )  /\  y  e.  ( 0 ... B
) )  /\  ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1
) ) )  =  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )  ->  ( abs `  ( ( B  x.  ( ( A  x.  x )  mod  1
) )  -  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )  =  ( abs `  ( ( ( |_
`  ( B  x.  ( ( A  x.  x )  mod  1
) ) )  +  ( ( B  x.  ( ( A  x.  x )  mod  1
) )  mod  1
) )  -  (
( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) )  +  ( ( B  x.  ( ( A  x.  y )  mod  1 ) )  mod  1 ) ) ) ) )
27 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B
) )  /\  y  e.  ( 0 ... B
) )  /\  ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1
) ) )  =  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )  ->  ( |_ `  ( B  x.  (
( A  x.  x
)  mod  1 ) ) )  =  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )
2827oveq1d 6311 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B
) )  /\  y  e.  ( 0 ... B
) )  /\  ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1
) ) )  =  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )  ->  ( ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1
) ) )  +  ( ( B  x.  ( ( A  x.  x )  mod  1
) )  mod  1
) )  =  ( ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) )  +  ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  mod  1 ) ) )
2928oveq1d 6311 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B
) )  /\  y  e.  ( 0 ... B
) )  /\  ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1
) ) )  =  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )  ->  ( (
( |_ `  ( B  x.  ( ( A  x.  x )  mod  1 ) ) )  +  ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  mod  1 ) )  -  ( ( |_ `  ( B  x.  (
( A  x.  y
)  mod  1 ) ) )  +  ( ( B  x.  (
( A  x.  y
)  mod  1 ) )  mod  1 ) ) )  =  ( ( ( |_ `  ( B  x.  (
( A  x.  y
)  mod  1 ) ) )  +  ( ( B  x.  (
( A  x.  x
)  mod  1 ) )  mod  1 ) )  -  ( ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) )  +  ( ( B  x.  ( ( A  x.  y )  mod  1 ) )  mod  1 ) ) ) )
3029fveq2d 5876 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B
) )  /\  y  e.  ( 0 ... B
) )  /\  ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1
) ) )  =  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )  ->  ( abs `  ( ( ( |_
`  ( B  x.  ( ( A  x.  x )  mod  1
) ) )  +  ( ( B  x.  ( ( A  x.  x )  mod  1
) )  mod  1
) )  -  (
( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) )  +  ( ( B  x.  ( ( A  x.  y )  mod  1 ) )  mod  1 ) ) ) )  =  ( abs `  ( ( ( |_
`  ( B  x.  ( ( A  x.  y )  mod  1
) ) )  +  ( ( B  x.  ( ( A  x.  x )  mod  1
) )  mod  1
) )  -  (
( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) )  +  ( ( B  x.  ( ( A  x.  y )  mod  1 ) )  mod  1 ) ) ) ) )
3121flcld 11938 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1
) ) )  e.  ZZ )
3231zcnd 10991 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1
) ) )  e.  CC )
3313, 11modcld 12005 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( B  x.  (
( A  x.  x
)  mod  1 ) )  mod  1 )  e.  RR )
3433recnd 9639 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( B  x.  (
( A  x.  x
)  mod  1 ) )  mod  1 )  e.  CC )
3521, 11modcld 12005 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( B  x.  (
( A  x.  y
)  mod  1 ) )  mod  1 )  e.  RR )
3635recnd 9639 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( B  x.  (
( A  x.  y
)  mod  1 ) )  mod  1 )  e.  CC )
3732, 34, 36pnpcand 9987 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( ( |_ `  ( B  x.  (
( A  x.  y
)  mod  1 ) ) )  +  ( ( B  x.  (
( A  x.  x
)  mod  1 ) )  mod  1 ) )  -  ( ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) )  +  ( ( B  x.  ( ( A  x.  y )  mod  1 ) )  mod  1 ) ) )  =  ( ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  mod  1 )  -  ( ( B  x.  ( ( A  x.  y )  mod  1
) )  mod  1
) ) )
3837fveq2d 5876 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( abs `  ( ( ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) )  +  ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  mod  1 ) )  -  ( ( |_ `  ( B  x.  (
( A  x.  y
)  mod  1 ) ) )  +  ( ( B  x.  (
( A  x.  y
)  mod  1 ) )  mod  1 ) ) ) )  =  ( abs `  (
( ( B  x.  ( ( A  x.  x )  mod  1
) )  mod  1
)  -  ( ( B  x.  ( ( A  x.  y )  mod  1 ) )  mod  1 ) ) ) )
39 0red 9614 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  0  e.  RR )
40 1red 9628 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  1  e.  RR )
41 modelico 30961 . . . . . . . . . . . . . 14  |-  ( ( ( B  x.  (
( A  x.  x
)  mod  1 ) )  e.  RR  /\  1  e.  RR+ )  -> 
( ( B  x.  ( ( A  x.  x )  mod  1
) )  mod  1
)  e.  ( 0 [,) 1 ) )
4213, 10, 41sylancl 662 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( B  x.  (
( A  x.  x
)  mod  1 ) )  mod  1 )  e.  ( 0 [,) 1 ) )
43 modelico 30961 . . . . . . . . . . . . . 14  |-  ( ( ( B  x.  (
( A  x.  y
)  mod  1 ) )  e.  RR  /\  1  e.  RR+ )  -> 
( ( B  x.  ( ( A  x.  y )  mod  1
) )  mod  1
)  e.  ( 0 [,) 1 ) )
4421, 10, 43sylancl 662 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( B  x.  (
( A  x.  y
)  mod  1 ) )  mod  1 )  e.  ( 0 [,) 1 ) )
45 icodiamlt 30960 . . . . . . . . . . . . 13  |-  ( ( ( 0  e.  RR  /\  1  e.  RR )  /\  ( ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  mod  1 )  e.  ( 0 [,) 1
)  /\  ( ( B  x.  ( ( A  x.  y )  mod  1 ) )  mod  1 )  e.  ( 0 [,) 1 ) ) )  ->  ( abs `  ( ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  mod  1 )  -  ( ( B  x.  ( ( A  x.  y )  mod  1
) )  mod  1
) ) )  < 
( 1  -  0 ) )
4639, 40, 42, 44, 45syl22anc 1229 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( abs `  ( ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  mod  1 )  -  ( ( B  x.  ( ( A  x.  y )  mod  1
) )  mod  1
) ) )  < 
( 1  -  0 ) )
47 1m0e1 10667 . . . . . . . . . . . 12  |-  ( 1  -  0 )  =  1
4846, 47syl6breq 4495 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( abs `  ( ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  mod  1 )  -  ( ( B  x.  ( ( A  x.  y )  mod  1
) )  mod  1
) ) )  <  1 )
4938, 48eqbrtrd 4476 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( abs `  ( ( ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) )  +  ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  mod  1 ) )  -  ( ( |_ `  ( B  x.  (
( A  x.  y
)  mod  1 ) ) )  +  ( ( B  x.  (
( A  x.  y
)  mod  1 ) )  mod  1 ) ) ) )  <  1 )
5049adantr 465 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B
) )  /\  y  e.  ( 0 ... B
) )  /\  ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1
) ) )  =  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )  ->  ( abs `  ( ( ( |_
`  ( B  x.  ( ( A  x.  y )  mod  1
) ) )  +  ( ( B  x.  ( ( A  x.  x )  mod  1
) )  mod  1
) )  -  (
( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) )  +  ( ( B  x.  ( ( A  x.  y )  mod  1 ) )  mod  1 ) ) ) )  <  1 )
5130, 50eqbrtrd 4476 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B
) )  /\  y  e.  ( 0 ... B
) )  /\  ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1
) ) )  =  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )  ->  ( abs `  ( ( ( |_
`  ( B  x.  ( ( A  x.  x )  mod  1
) ) )  +  ( ( B  x.  ( ( A  x.  x )  mod  1
) )  mod  1
) )  -  (
( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) )  +  ( ( B  x.  ( ( A  x.  y )  mod  1 ) )  mod  1 ) ) ) )  <  1 )
5226, 51eqbrtrd 4476 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B
) )  /\  y  e.  ( 0 ... B
) )  /\  ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1
) ) )  =  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )  ->  ( abs `  ( ( B  x.  ( ( A  x.  x )  mod  1
) )  -  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )  <  1 )
5352ex 434 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( |_ `  ( B  x.  ( ( A  x.  x )  mod  1 ) ) )  =  ( |_ `  ( B  x.  (
( A  x.  y
)  mod  1 ) ) )  ->  ( abs `  ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  -  ( B  x.  (
( A  x.  y
)  mod  1 ) ) ) )  <  1 ) )
5412, 20resubcld 10008 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( ( A  x.  x )  mod  1
)  -  ( ( A  x.  y )  mod  1 ) )  e.  RR )
5554recnd 9639 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( ( A  x.  x )  mod  1
)  -  ( ( A  x.  y )  mod  1 ) )  e.  CC )
5655abscld 13279 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( abs `  ( ( ( A  x.  x )  mod  1 )  -  ( ( A  x.  y )  mod  1
) ) )  e.  RR )
57 nngt0 10585 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  0  <  B )
5857ad3antlr 730 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  0  <  B )
5958gt0ne0d 10138 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  B  =/=  0 )
603, 59rereccld 10392 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
1  /  B )  e.  RR )
61 ltmul2 10414 . . . . . . . 8  |-  ( ( ( abs `  (
( ( A  x.  x )  mod  1
)  -  ( ( A  x.  y )  mod  1 ) ) )  e.  RR  /\  ( 1  /  B
)  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( abs `  ( ( ( A  x.  x )  mod  1 )  -  ( ( A  x.  y )  mod  1
) ) )  < 
( 1  /  B
)  <->  ( B  x.  ( abs `  ( ( ( A  x.  x
)  mod  1 )  -  ( ( A  x.  y )  mod  1 ) ) ) )  <  ( B  x.  ( 1  /  B ) ) ) )
6256, 60, 3, 58, 61syl112anc 1232 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( abs `  (
( ( A  x.  x )  mod  1
)  -  ( ( A  x.  y )  mod  1 ) ) )  <  ( 1  /  B )  <->  ( B  x.  ( abs `  (
( ( A  x.  x )  mod  1
)  -  ( ( A  x.  y )  mod  1 ) ) ) )  <  ( B  x.  ( 1  /  B ) ) ) )
63 nnnn0 10823 . . . . . . . . . . . . . 14  |-  ( B  e.  NN  ->  B  e.  NN0 )
6463nn0ge0d 10876 . . . . . . . . . . . . 13  |-  ( B  e.  NN  ->  0  <_  B )
6564ad3antlr 730 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  0  <_  B )
663, 65absidd 13266 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( abs `  B )  =  B )
6766eqcomd 2465 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  B  =  ( abs `  B
) )
6867oveq1d 6311 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( B  x.  ( abs `  ( ( ( A  x.  x )  mod  1 )  -  (
( A  x.  y
)  mod  1 ) ) ) )  =  ( ( abs `  B
)  x.  ( abs `  ( ( ( A  x.  x )  mod  1 )  -  (
( A  x.  y
)  mod  1 ) ) ) ) )
693recnd 9639 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  B  e.  CC )
7069, 55absmuld 13297 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( abs `  ( B  x.  ( ( ( A  x.  x )  mod  1 )  -  (
( A  x.  y
)  mod  1 ) ) ) )  =  ( ( abs `  B
)  x.  ( abs `  ( ( ( A  x.  x )  mod  1 )  -  (
( A  x.  y
)  mod  1 ) ) ) ) )
7112recnd 9639 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( A  x.  x
)  mod  1 )  e.  CC )
7220recnd 9639 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( A  x.  y
)  mod  1 )  e.  CC )
7369, 71, 72subdid 10033 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( B  x.  ( (
( A  x.  x
)  mod  1 )  -  ( ( A  x.  y )  mod  1 ) ) )  =  ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  -  ( B  x.  (
( A  x.  y
)  mod  1 ) ) ) )
7473fveq2d 5876 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( abs `  ( B  x.  ( ( ( A  x.  x )  mod  1 )  -  (
( A  x.  y
)  mod  1 ) ) ) )  =  ( abs `  (
( B  x.  (
( A  x.  x
)  mod  1 ) )  -  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) ) )
7568, 70, 743eqtr2d 2504 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( B  x.  ( abs `  ( ( ( A  x.  x )  mod  1 )  -  (
( A  x.  y
)  mod  1 ) ) ) )  =  ( abs `  (
( B  x.  (
( A  x.  x
)  mod  1 ) )  -  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) ) )
7669, 59recidd 10336 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( B  x.  ( 1  /  B ) )  =  1 )
7775, 76breq12d 4469 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( B  x.  ( abs `  ( ( ( A  x.  x )  mod  1 )  -  ( ( A  x.  y )  mod  1
) ) ) )  <  ( B  x.  ( 1  /  B
) )  <->  ( abs `  ( ( B  x.  ( ( A  x.  x )  mod  1
) )  -  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )  <  1 ) )
7862, 77bitrd 253 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( abs `  (
( ( A  x.  x )  mod  1
)  -  ( ( A  x.  y )  mod  1 ) ) )  <  ( 1  /  B )  <->  ( abs `  ( ( B  x.  ( ( A  x.  x )  mod  1
) )  -  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )  <  1 ) )
7953, 78sylibrd 234 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( |_ `  ( B  x.  ( ( A  x.  x )  mod  1 ) ) )  =  ( |_ `  ( B  x.  (
( A  x.  y
)  mod  1 ) ) )  ->  ( abs `  ( ( ( A  x.  x )  mod  1 )  -  ( ( A  x.  y )  mod  1
) ) )  < 
( 1  /  B
) ) )
8079anim2d 565 . . . 4  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( x  <  y  /\  ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1 ) ) )  =  ( |_ `  ( B  x.  (
( A  x.  y
)  mod  1 ) ) ) )  -> 
( x  <  y  /\  ( abs `  (
( ( A  x.  x )  mod  1
)  -  ( ( A  x.  y )  mod  1 ) ) )  <  ( 1  /  B ) ) ) )
8180reximdva 2932 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  ->  ( E. y  e.  ( 0 ... B ) ( x  <  y  /\  ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1 ) ) )  =  ( |_ `  ( B  x.  (
( A  x.  y
)  mod  1 ) ) ) )  ->  E. y  e.  (
0 ... B ) ( x  <  y  /\  ( abs `  ( ( ( A  x.  x
)  mod  1 )  -  ( ( A  x.  y )  mod  1 ) ) )  <  ( 1  /  B ) ) ) )
8281reximdva 2932 . 2  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  ( E. x  e.  (
0 ... B ) E. y  e.  ( 0 ... B ) ( x  <  y  /\  ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1 ) ) )  =  ( |_ `  ( B  x.  (
( A  x.  y
)  mod  1 ) ) ) )  ->  E. x  e.  (
0 ... B ) E. y  e.  ( 0 ... B ) ( x  <  y  /\  ( abs `  ( ( ( A  x.  x
)  mod  1 )  -  ( ( A  x.  y )  mod  1 ) ) )  <  ( 1  /  B ) ) ) )
831, 82mpd 15 1  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  E. x  e.  ( 0 ... B
) E. y  e.  ( 0 ... B
) ( x  < 
y  /\  ( abs `  ( ( ( A  x.  x )  mod  1 )  -  (
( A  x.  y
)  mod  1 ) ) )  <  (
1  /  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   E.wrex 2808   class class class wbr 4456   ` cfv 5594  (class class class)co 6296   RRcr 9508   0cc0 9509   1c1 9510    + caddc 9512    x. cmul 9514    < clt 9645    <_ cle 9646    - cmin 9824    / cdiv 10227   NNcn 10556   RR+crp 11245   [,)cico 11556   ...cfz 11697   |_cfl 11930    mod cmo 11999   abscabs 13079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-card 8337  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-rp 11246  df-ico 11560  df-fz 11698  df-fl 11932  df-mod 12000  df-seq 12111  df-exp 12170  df-hash 12409  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081
This theorem is referenced by:  irrapxlem3  30964
  Copyright terms: Public domain W3C validator