Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem1 Structured version   Unicode version

Theorem irrapxlem1 30997
Description: Lemma for irrapx1 31003. Divides the unit interval into  B half-open sections and using the pigeonhole principle fphpdo 30990 finds two multiples of  A in the same section mod 1. (Contributed by Stefan O'Rear, 12-Sep-2014.)
Assertion
Ref Expression
irrapxlem1  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  E. x  e.  ( 0 ... B
) E. y  e.  ( 0 ... B
) ( x  < 
y  /\  ( |_ `  ( B  x.  (
( A  x.  x
)  mod  1 ) ) )  =  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) ) )
Distinct variable groups:    x, A, y    x, B, y

Proof of Theorem irrapxlem1
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 fzssuz 11728 . . . 4  |-  ( 0 ... B )  C_  ( ZZ>= `  0 )
2 uzssz 11101 . . . . 5  |-  ( ZZ>= ` 
0 )  C_  ZZ
3 zssre 10867 . . . . 5  |-  ZZ  C_  RR
42, 3sstri 3498 . . . 4  |-  ( ZZ>= ` 
0 )  C_  RR
51, 4sstri 3498 . . 3  |-  ( 0 ... B )  C_  RR
65a1i 11 . 2  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  (
0 ... B )  C_  RR )
7 ovex 6298 . . 3  |-  ( 0 ... ( B  - 
1 ) )  e. 
_V
87a1i 11 . 2  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  (
0 ... ( B  - 
1 ) )  e. 
_V )
9 nnm1nn0 10833 . . . . 5  |-  ( B  e.  NN  ->  ( B  -  1 )  e.  NN0 )
109adantl 464 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  ( B  -  1 )  e.  NN0 )
11 nn0uz 11116 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
1210, 11syl6eleq 2552 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  ( B  -  1 )  e.  ( ZZ>= `  0
) )
13 nnz 10882 . . . 4  |-  ( B  e.  NN  ->  B  e.  ZZ )
1413adantl 464 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  B  e.  ZZ )
15 nnre 10538 . . . . 5  |-  ( B  e.  NN  ->  B  e.  RR )
1615adantl 464 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  B  e.  RR )
1716ltm1d 10473 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  ( B  -  1 )  <  B )
18 fzsdom2 12470 . . 3  |-  ( ( ( ( B  - 
1 )  e.  (
ZZ>= `  0 )  /\  B  e.  ZZ )  /\  ( B  -  1 )  <  B )  ->  ( 0 ... ( B  -  1 ) )  ~<  (
0 ... B ) )
1912, 14, 17, 18syl21anc 1225 . 2  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  (
0 ... ( B  - 
1 ) )  ~< 
( 0 ... B
) )
2015ad2antlr 724 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  B  e.  RR )
21 rpre 11227 . . . . . . . . 9  |-  ( A  e.  RR+  ->  A  e.  RR )
2221ad2antrr 723 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  A  e.  RR )
23 elfzelz 11691 . . . . . . . . . 10  |-  ( a  e.  ( 0 ... B )  ->  a  e.  ZZ )
2423zred 10965 . . . . . . . . 9  |-  ( a  e.  ( 0 ... B )  ->  a  e.  RR )
2524adantl 464 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  a  e.  RR )
2622, 25remulcld 9613 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  ( A  x.  a )  e.  RR )
27 1rp 11225 . . . . . . 7  |-  1  e.  RR+
28 modcl 11982 . . . . . . 7  |-  ( ( ( A  x.  a
)  e.  RR  /\  1  e.  RR+ )  -> 
( ( A  x.  a )  mod  1
)  e.  RR )
2926, 27, 28sylancl 660 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  ( ( A  x.  a )  mod  1 )  e.  RR )
3020, 29remulcld 9613 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  ( B  x.  ( ( A  x.  a )  mod  1
) )  e.  RR )
3130flcld 11916 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  ( |_ `  ( B  x.  (
( A  x.  a
)  mod  1 ) ) )  e.  ZZ )
3220recnd 9611 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  B  e.  CC )
3332mul01d 9768 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  ( B  x.  0 )  =  0 )
34 modge0 11987 . . . . . . . . . 10  |-  ( ( ( A  x.  a
)  e.  RR  /\  1  e.  RR+ )  -> 
0  <_  ( ( A  x.  a )  mod  1 ) )
3526, 27, 34sylancl 660 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  0  <_  ( ( A  x.  a
)  mod  1 ) )
36 0red 9586 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  0  e.  RR )
37 nngt0 10560 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  0  <  B )
3837ad2antlr 724 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  0  <  B )
39 lemul2 10391 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  ( ( A  x.  a )  mod  1
)  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( 0  <_  ( ( A  x.  a )  mod  1 )  <->  ( B  x.  0 )  <_  ( B  x.  ( ( A  x.  a )  mod  1 ) ) ) )
4036, 29, 20, 38, 39syl112anc 1230 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  ( 0  <_  ( ( A  x.  a )  mod  1 )  <->  ( B  x.  0 )  <_  ( B  x.  ( ( A  x.  a )  mod  1 ) ) ) )
4135, 40mpbid 210 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  ( B  x.  0 )  <_  ( B  x.  ( ( A  x.  a )  mod  1 ) ) )
4233, 41eqbrtrrd 4461 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  0  <_  ( B  x.  ( ( A  x.  a )  mod  1 ) ) )
4336, 30lenltd 9720 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  ( 0  <_  ( B  x.  ( ( A  x.  a )  mod  1
) )  <->  -.  ( B  x.  ( ( A  x.  a )  mod  1 ) )  <  0 ) )
4442, 43mpbid 210 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  -.  ( B  x.  ( ( A  x.  a )  mod  1 ) )  <  0 )
45 0z 10871 . . . . . . 7  |-  0  e.  ZZ
46 fllt 11924 . . . . . . 7  |-  ( ( ( B  x.  (
( A  x.  a
)  mod  1 ) )  e.  RR  /\  0  e.  ZZ )  ->  ( ( B  x.  ( ( A  x.  a )  mod  1
) )  <  0  <->  ( |_ `  ( B  x.  ( ( A  x.  a )  mod  1 ) ) )  <  0 ) )
4730, 45, 46sylancl 660 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  ( ( B  x.  ( ( A  x.  a )  mod  1 ) )  <  0  <->  ( |_ `  ( B  x.  (
( A  x.  a
)  mod  1 ) ) )  <  0
) )
4844, 47mtbid 298 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  -.  ( |_ `  ( B  x.  ( ( A  x.  a )  mod  1
) ) )  <  0 )
4931zred 10965 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  ( |_ `  ( B  x.  (
( A  x.  a
)  mod  1 ) ) )  e.  RR )
5036, 49lenltd 9720 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  ( 0  <_  ( |_ `  ( B  x.  (
( A  x.  a
)  mod  1 ) ) )  <->  -.  ( |_ `  ( B  x.  ( ( A  x.  a )  mod  1
) ) )  <  0 ) )
5148, 50mpbird 232 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  0  <_  ( |_ `  ( B  x.  ( ( A  x.  a )  mod  1 ) ) ) )
52 elnn0z 10873 . . . 4  |-  ( ( |_ `  ( B  x.  ( ( A  x.  a )  mod  1 ) ) )  e.  NN0  <->  ( ( |_
`  ( B  x.  ( ( A  x.  a )  mod  1
) ) )  e.  ZZ  /\  0  <_ 
( |_ `  ( B  x.  ( ( A  x.  a )  mod  1 ) ) ) ) )
5331, 51, 52sylanbrc 662 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  ( |_ `  ( B  x.  (
( A  x.  a
)  mod  1 ) ) )  e.  NN0 )
549ad2antlr 724 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  ( B  -  1 )  e. 
NN0 )
55 flle 11917 . . . . . . 7  |-  ( ( B  x.  ( ( A  x.  a )  mod  1 ) )  e.  RR  ->  ( |_ `  ( B  x.  ( ( A  x.  a )  mod  1
) ) )  <_ 
( B  x.  (
( A  x.  a
)  mod  1 ) ) )
5630, 55syl 16 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  ( |_ `  ( B  x.  (
( A  x.  a
)  mod  1 ) ) )  <_  ( B  x.  ( ( A  x.  a )  mod  1 ) ) )
57 modlt 11988 . . . . . . . . 9  |-  ( ( ( A  x.  a
)  e.  RR  /\  1  e.  RR+ )  -> 
( ( A  x.  a )  mod  1
)  <  1 )
5826, 27, 57sylancl 660 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  ( ( A  x.  a )  mod  1 )  <  1
)
59 1red 9600 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  1  e.  RR )
60 ltmul2 10389 . . . . . . . . 9  |-  ( ( ( ( A  x.  a )  mod  1
)  e.  RR  /\  1  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  -> 
( ( ( A  x.  a )  mod  1 )  <  1  <->  ( B  x.  ( ( A  x.  a )  mod  1 ) )  <  ( B  x.  1 ) ) )
6129, 59, 20, 38, 60syl112anc 1230 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  ( (
( A  x.  a
)  mod  1 )  <  1  <->  ( B  x.  ( ( A  x.  a )  mod  1
) )  <  ( B  x.  1 ) ) )
6258, 61mpbid 210 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  ( B  x.  ( ( A  x.  a )  mod  1
) )  <  ( B  x.  1 ) )
6332mulid1d 9602 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  ( B  x.  1 )  =  B )
6462, 63breqtrd 4463 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  ( B  x.  ( ( A  x.  a )  mod  1
) )  <  B
)
6549, 30, 20, 56, 64lelttrd 9729 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  ( |_ `  ( B  x.  (
( A  x.  a
)  mod  1 ) ) )  <  B
)
66 nncn 10539 . . . . . . 7  |-  ( B  e.  NN  ->  B  e.  CC )
67 ax-1cn 9539 . . . . . . 7  |-  1  e.  CC
68 npcan 9820 . . . . . . 7  |-  ( ( B  e.  CC  /\  1  e.  CC )  ->  ( ( B  - 
1 )  +  1 )  =  B )
6966, 67, 68sylancl 660 . . . . . 6  |-  ( B  e.  NN  ->  (
( B  -  1 )  +  1 )  =  B )
7069ad2antlr 724 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  ( ( B  -  1 )  +  1 )  =  B )
7165, 70breqtrrd 4465 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  ( |_ `  ( B  x.  (
( A  x.  a
)  mod  1 ) ) )  <  (
( B  -  1 )  +  1 ) )
7213ad2antlr 724 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  B  e.  ZZ )
73 1z 10890 . . . . . 6  |-  1  e.  ZZ
74 zsubcl 10902 . . . . . 6  |-  ( ( B  e.  ZZ  /\  1  e.  ZZ )  ->  ( B  -  1 )  e.  ZZ )
7572, 73, 74sylancl 660 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  ( B  -  1 )  e.  ZZ )
76 zleltp1 10910 . . . . 5  |-  ( ( ( |_ `  ( B  x.  ( ( A  x.  a )  mod  1 ) ) )  e.  ZZ  /\  ( B  -  1 )  e.  ZZ )  -> 
( ( |_ `  ( B  x.  (
( A  x.  a
)  mod  1 ) ) )  <_  ( B  -  1 )  <-> 
( |_ `  ( B  x.  ( ( A  x.  a )  mod  1 ) ) )  <  ( ( B  -  1 )  +  1 ) ) )
7731, 75, 76syl2anc 659 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  ( ( |_ `  ( B  x.  ( ( A  x.  a )  mod  1
) ) )  <_ 
( B  -  1 )  <->  ( |_ `  ( B  x.  (
( A  x.  a
)  mod  1 ) ) )  <  (
( B  -  1 )  +  1 ) ) )
7871, 77mpbird 232 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  ( |_ `  ( B  x.  (
( A  x.  a
)  mod  1 ) ) )  <_  ( B  -  1 ) )
79 elfz2nn0 11773 . . 3  |-  ( ( |_ `  ( B  x.  ( ( A  x.  a )  mod  1 ) ) )  e.  ( 0 ... ( B  -  1 ) )  <->  ( ( |_ `  ( B  x.  ( ( A  x.  a )  mod  1
) ) )  e. 
NN0  /\  ( B  -  1 )  e. 
NN0  /\  ( |_ `  ( B  x.  (
( A  x.  a
)  mod  1 ) ) )  <_  ( B  -  1 ) ) )
8053, 54, 78, 79syl3anbrc 1178 . 2  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 0 ... B ) )  ->  ( |_ `  ( B  x.  (
( A  x.  a
)  mod  1 ) ) )  e.  ( 0 ... ( B  -  1 ) ) )
81 oveq2 6278 . . . . 5  |-  ( a  =  x  ->  ( A  x.  a )  =  ( A  x.  x ) )
8281oveq1d 6285 . . . 4  |-  ( a  =  x  ->  (
( A  x.  a
)  mod  1 )  =  ( ( A  x.  x )  mod  1 ) )
8382oveq2d 6286 . . 3  |-  ( a  =  x  ->  ( B  x.  ( ( A  x.  a )  mod  1 ) )  =  ( B  x.  (
( A  x.  x
)  mod  1 ) ) )
8483fveq2d 5852 . 2  |-  ( a  =  x  ->  ( |_ `  ( B  x.  ( ( A  x.  a )  mod  1
) ) )  =  ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1 ) ) ) )
85 oveq2 6278 . . . . 5  |-  ( a  =  y  ->  ( A  x.  a )  =  ( A  x.  y ) )
8685oveq1d 6285 . . . 4  |-  ( a  =  y  ->  (
( A  x.  a
)  mod  1 )  =  ( ( A  x.  y )  mod  1 ) )
8786oveq2d 6286 . . 3  |-  ( a  =  y  ->  ( B  x.  ( ( A  x.  a )  mod  1 ) )  =  ( B  x.  (
( A  x.  y
)  mod  1 ) ) )
8887fveq2d 5852 . 2  |-  ( a  =  y  ->  ( |_ `  ( B  x.  ( ( A  x.  a )  mod  1
) ) )  =  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )
896, 8, 19, 80, 84, 88fphpdo 30990 1  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  E. x  e.  ( 0 ... B
) E. y  e.  ( 0 ... B
) ( x  < 
y  /\  ( |_ `  ( B  x.  (
( A  x.  x
)  mod  1 ) ) )  =  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   E.wrex 2805   _Vcvv 3106    C_ wss 3461   class class class wbr 4439   ` cfv 5570  (class class class)co 6270    ~< csdm 7508   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484    x. cmul 9486    < clt 9617    <_ cle 9618    - cmin 9796   NNcn 10531   NN0cn0 10791   ZZcz 10860   ZZ>=cuz 11082   RR+crp 11221   ...cfz 11675   |_cfl 11908    mod cmo 11978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-sup 7893  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-fz 11676  df-fl 11910  df-mod 11979  df-hash 12388
This theorem is referenced by:  irrapxlem2  30998
  Copyright terms: Public domain W3C validator