MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipval2lem5 Structured version   Unicode version

Theorem ipval2lem5 26047
Description: Lemma for ipval3 26046. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipfval.1  |-  X  =  ( BaseSet `  U )
dipfval.2  |-  G  =  ( +v `  U
)
dipfval.4  |-  S  =  ( .sOLD `  U )
dipfval.6  |-  N  =  ( normCV `  U )
dipfval.7  |-  P  =  ( .iOLD `  U )
ipval3.3  |-  M  =  ( -v `  U
)
Assertion
Ref Expression
ipval2lem5  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  /\  C  e.  CC )  ->  ( ( N `
 ( A M ( C S B ) ) ) ^
2 )  e.  RR )

Proof of Theorem ipval2lem5
StepHypRef Expression
1 simpl1 1002 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  /\  C  e.  CC )  ->  U  e.  NrmCVec )
2 simpl2 1003 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  /\  C  e.  CC )  ->  A  e.  X
)
3 dipfval.1 . . . . . . . 8  |-  X  =  ( BaseSet `  U )
4 dipfval.4 . . . . . . . 8  |-  S  =  ( .sOLD `  U )
53, 4nvscl 25948 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  C  e.  CC  /\  B  e.  X )  ->  ( C S B )  e.  X )
653com23 1205 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  C  e.  CC )  ->  ( C S B )  e.  X )
763expa 1199 . . . . 5  |-  ( ( ( U  e.  NrmCVec  /\  B  e.  X )  /\  C  e.  CC )  ->  ( C S B )  e.  X
)
873adantl2 1156 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  /\  C  e.  CC )  ->  ( C S B )  e.  X
)
9 ipval3.3 . . . . 5  |-  M  =  ( -v `  U
)
103, 9nvmcl 25969 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  ( C S B )  e.  X )  ->  ( A M ( C S B ) )  e.  X )
111, 2, 8, 10syl3anc 1232 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  /\  C  e.  CC )  ->  ( A M ( C S B ) )  e.  X
)
12 dipfval.6 . . . 4  |-  N  =  ( normCV `  U )
133, 12nvcl 25989 . . 3  |-  ( ( U  e.  NrmCVec  /\  ( A M ( C S B ) )  e.  X )  ->  ( N `  ( A M ( C S B ) ) )  e.  RR )
141, 11, 13syl2anc 661 . 2  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  /\  C  e.  CC )  ->  ( N `  ( A M ( C S B ) ) )  e.  RR )
1514resqcld 12382 1  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  /\  C  e.  CC )  ->  ( ( N `
 ( A M ( C S B ) ) ) ^
2 )  e.  RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 976    = wceq 1407    e. wcel 1844   ` cfv 5571  (class class class)co 6280   CCcc 9522   RRcr 9523   2c2 10628   ^cexp 12212   NrmCVeccnv 25904   +vcpv 25905   BaseSetcba 25906   .sOLDcns 25907   -vcnsb 25909   normCVcnmcv 25910   .iOLDcdip 26037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-om 6686  df-1st 6786  df-2nd 6787  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-er 7350  df-en 7557  df-dom 7558  df-sdom 7559  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846  df-nn 10579  df-2 10637  df-n0 10839  df-z 10908  df-uz 11130  df-seq 12154  df-exp 12213  df-grpo 25620  df-gid 25621  df-ginv 25622  df-gdiv 25623  df-ablo 25711  df-vc 25866  df-nv 25912  df-va 25915  df-ba 25916  df-sm 25917  df-0v 25918  df-vs 25919  df-nmcv 25920
This theorem is referenced by:  ipval2lem6  26048  4ipval3  26049
  Copyright terms: Public domain W3C validator