MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipoval Structured version   Unicode version

Theorem ipoval 16405
Description: Value of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypotheses
Ref Expression
ipoval.i  |-  I  =  (toInc `  F )
ipoval.l  |-  .<_  =  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y
) }
Assertion
Ref Expression
ipoval  |-  ( F  e.  V  ->  I  =  ( { <. (
Base `  ndx ) ,  F >. ,  <. (TopSet ` 
ndx ) ,  (ordTop `  .<_  ) >. }  u.  {
<. ( le `  ndx ) ,  .<_  >. ,  <. ( oc `  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } ) )
Distinct variable groups:    x, y, F    x, I, y    x, V, y
Allowed substitution hints:    .<_ ( x, y)

Proof of Theorem ipoval
Dummy variables  f 
o are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3094 . 2  |-  ( F  e.  V  ->  F  e.  _V )
2 ipoval.i . . 3  |-  I  =  (toInc `  F )
3 vex 3088 . . . . . . . 8  |-  f  e. 
_V
43, 3xpex 6615 . . . . . . 7  |-  ( f  X.  f )  e. 
_V
5 simpl 459 . . . . . . . . . 10  |-  ( ( { x ,  y }  C_  f  /\  x  C_  y )  ->  { x ,  y }  C_  f )
6 vex 3088 . . . . . . . . . . 11  |-  x  e. 
_V
7 vex 3088 . . . . . . . . . . 11  |-  y  e. 
_V
86, 7prss 4160 . . . . . . . . . 10  |-  ( ( x  e.  f  /\  y  e.  f )  <->  { x ,  y } 
C_  f )
95, 8sylibr 216 . . . . . . . . 9  |-  ( ( { x ,  y }  C_  f  /\  x  C_  y )  -> 
( x  e.  f  /\  y  e.  f ) )
109ssopab2i 4754 . . . . . . . 8  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  f  /\  x  C_  y ) } 
C_  { <. x ,  y >.  |  ( x  e.  f  /\  y  e.  f ) }
11 df-xp 4865 . . . . . . . 8  |-  ( f  X.  f )  =  { <. x ,  y
>.  |  ( x  e.  f  /\  y  e.  f ) }
1210, 11sseqtr4i 3503 . . . . . . 7  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  f  /\  x  C_  y ) } 
C_  ( f  X.  f )
134, 12ssexi 4575 . . . . . 6  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  f  /\  x  C_  y ) }  e.  _V
1413a1i 11 . . . . 5  |-  ( f  =  F  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  f  /\  x  C_  y ) }  e.  _V )
15 sseq2 3492 . . . . . . . 8  |-  ( f  =  F  ->  ( { x ,  y }  C_  f  <->  { x ,  y }  C_  F ) )
1615anbi1d 710 . . . . . . 7  |-  ( f  =  F  ->  (
( { x ,  y }  C_  f  /\  x  C_  y )  <-> 
( { x ,  y }  C_  F  /\  x  C_  y ) ) )
1716opabbidv 4493 . . . . . 6  |-  ( f  =  F  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  f  /\  x  C_  y ) }  =  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } )
18 ipoval.l . . . . . 6  |-  .<_  =  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y
) }
1917, 18syl6eqr 2482 . . . . 5  |-  ( f  =  F  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  f  /\  x  C_  y ) }  =  .<_  )
20 simpl 459 . . . . . . . 8  |-  ( ( f  =  F  /\  o  =  .<_  )  -> 
f  =  F )
2120opeq2d 4200 . . . . . . 7  |-  ( ( f  =  F  /\  o  =  .<_  )  ->  <. ( Base `  ndx ) ,  f >.  = 
<. ( Base `  ndx ) ,  F >. )
22 simpr 463 . . . . . . . . 9  |-  ( ( f  =  F  /\  o  =  .<_  )  -> 
o  =  .<_  )
2322fveq2d 5891 . . . . . . . 8  |-  ( ( f  =  F  /\  o  =  .<_  )  -> 
(ordTop `  o )  =  (ordTop `  .<_  ) )
2423opeq2d 4200 . . . . . . 7  |-  ( ( f  =  F  /\  o  =  .<_  )  ->  <. (TopSet `  ndx ) ,  (ordTop `  o ) >.  =  <. (TopSet `  ndx ) ,  (ordTop `  .<_  )
>. )
2521, 24preq12d 4093 . . . . . 6  |-  ( ( f  =  F  /\  o  =  .<_  )  ->  { <. ( Base `  ndx ) ,  f >. , 
<. (TopSet `  ndx ) ,  (ordTop `  o ) >. }  =  { <. (
Base `  ndx ) ,  F >. ,  <. (TopSet ` 
ndx ) ,  (ordTop `  .<_  ) >. } )
2622opeq2d 4200 . . . . . . 7  |-  ( ( f  =  F  /\  o  =  .<_  )  ->  <. ( le `  ndx ) ,  o >.  = 
<. ( le `  ndx ) ,  .<_  >. )
27 id 23 . . . . . . . . . 10  |-  ( f  =  F  ->  f  =  F )
28 rabeq 3078 . . . . . . . . . . 11  |-  ( f  =  F  ->  { y  e.  f  |  ( y  i^i  x )  =  (/) }  =  {
y  e.  F  | 
( y  i^i  x
)  =  (/) } )
2928unieqd 4235 . . . . . . . . . 10  |-  ( f  =  F  ->  U. {
y  e.  f  |  ( y  i^i  x
)  =  (/) }  =  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } )
3027, 29mpteq12dv 4508 . . . . . . . . 9  |-  ( f  =  F  ->  (
x  e.  f  |->  U. { y  e.  f  |  ( y  i^i  x )  =  (/) } )  =  ( x  e.  F  |->  U. {
y  e.  F  | 
( y  i^i  x
)  =  (/) } ) )
3130adantr 467 . . . . . . . 8  |-  ( ( f  =  F  /\  o  =  .<_  )  -> 
( x  e.  f 
|->  U. { y  e.  f  |  ( y  i^i  x )  =  (/) } )  =  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) )
3231opeq2d 4200 . . . . . . 7  |-  ( ( f  =  F  /\  o  =  .<_  )  ->  <. ( oc `  ndx ) ,  ( x  e.  f  |->  U. {
y  e.  f  |  ( y  i^i  x
)  =  (/) } )
>.  =  <. ( oc
`  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. )
3326, 32preq12d 4093 . . . . . 6  |-  ( ( f  =  F  /\  o  =  .<_  )  ->  { <. ( le `  ndx ) ,  o >. ,  <. ( oc `  ndx ) ,  ( x  e.  f  |->  U. {
y  e.  f  |  ( y  i^i  x
)  =  (/) } )
>. }  =  { <. ( le `  ndx ) ,  .<_  >. ,  <. ( oc `  ndx ) ,  ( x  e.  F  |-> 
U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } )
3425, 33uneq12d 3627 . . . . 5  |-  ( ( f  =  F  /\  o  =  .<_  )  -> 
( { <. ( Base `  ndx ) ,  f >. ,  <. (TopSet ` 
ndx ) ,  (ordTop `  o ) >. }  u.  {
<. ( le `  ndx ) ,  o >. , 
<. ( oc `  ndx ) ,  ( x  e.  f  |->  U. {
y  e.  f  |  ( y  i^i  x
)  =  (/) } )
>. } )  =  ( { <. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  .<_  ) >. }  u.  { <. ( le `  ndx ) , 
.<_  >. ,  <. ( oc `  ndx ) ,  ( x  e.  F  |-> 
U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } ) )
3514, 19, 34csbied2 3429 . . . 4  |-  ( f  =  F  ->  [_ { <. x ,  y >.  |  ( { x ,  y }  C_  f  /\  x  C_  y
) }  /  o ]_ ( { <. ( Base `  ndx ) ,  f >. ,  <. (TopSet ` 
ndx ) ,  (ordTop `  o ) >. }  u.  {
<. ( le `  ndx ) ,  o >. , 
<. ( oc `  ndx ) ,  ( x  e.  f  |->  U. {
y  e.  f  |  ( y  i^i  x
)  =  (/) } )
>. } )  =  ( { <. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  .<_  ) >. }  u.  { <. ( le `  ndx ) , 
.<_  >. ,  <. ( oc `  ndx ) ,  ( x  e.  F  |-> 
U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } ) )
36 df-ipo 16403 . . . 4  |- toInc  =  ( f  e.  _V  |->  [_ { <. x ,  y
>.  |  ( {
x ,  y } 
C_  f  /\  x  C_  y ) }  / 
o ]_ ( { <. (
Base `  ndx ) ,  f >. ,  <. (TopSet ` 
ndx ) ,  (ordTop `  o ) >. }  u.  {
<. ( le `  ndx ) ,  o >. , 
<. ( oc `  ndx ) ,  ( x  e.  f  |->  U. {
y  e.  f  |  ( y  i^i  x
)  =  (/) } )
>. } ) )
37 prex 4669 . . . . 5  |-  { <. (
Base `  ndx ) ,  F >. ,  <. (TopSet ` 
ndx ) ,  (ordTop `  .<_  ) >. }  e.  _V
38 prex 4669 . . . . 5  |-  { <. ( le `  ndx ) ,  .<_  >. ,  <. ( oc `  ndx ) ,  ( x  e.  F  |-> 
U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. }  e.  _V
3937, 38unex 6609 . . . 4  |-  ( {
<. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  .<_  ) >. }  u.  { <. ( le `  ndx ) , 
.<_  >. ,  <. ( oc `  ndx ) ,  ( x  e.  F  |-> 
U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } )  e.  _V
4035, 36, 39fvmpt 5970 . . 3  |-  ( F  e.  _V  ->  (toInc `  F )  =  ( { <. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  .<_  ) >. }  u.  { <. ( le `  ndx ) , 
.<_  >. ,  <. ( oc `  ndx ) ,  ( x  e.  F  |-> 
U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } ) )
412, 40syl5eq 2476 . 2  |-  ( F  e.  _V  ->  I  =  ( { <. (
Base `  ndx ) ,  F >. ,  <. (TopSet ` 
ndx ) ,  (ordTop `  .<_  ) >. }  u.  {
<. ( le `  ndx ) ,  .<_  >. ,  <. ( oc `  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } ) )
421, 41syl 17 1  |-  ( F  e.  V  ->  I  =  ( { <. (
Base `  ndx ) ,  F >. ,  <. (TopSet ` 
ndx ) ,  (ordTop `  .<_  ) >. }  u.  {
<. ( le `  ndx ) ,  .<_  >. ,  <. ( oc `  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    = wceq 1438    e. wcel 1873   {crab 2780   _Vcvv 3085   [_csb 3401    u. cun 3440    i^i cin 3441    C_ wss 3442   (/)c0 3767   {cpr 4006   <.cop 4010   U.cuni 4225   {copab 4487    |-> cmpt 4488    X. cxp 4857   ` cfv 5607   ndxcnx 15123   Basecbs 15126  TopSetcts 15201   lecple 15202   occoc 15203  ordTopcordt 15402  toInccipo 16402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1664  ax-4 1677  ax-5 1753  ax-6 1799  ax-7 1844  ax-8 1875  ax-9 1877  ax-10 1892  ax-11 1897  ax-12 1910  ax-13 2058  ax-ext 2402  ax-sep 4552  ax-nul 4561  ax-pow 4608  ax-pr 4666  ax-un 6603
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 985  df-tru 1441  df-ex 1659  df-nf 1663  df-sb 1792  df-eu 2274  df-mo 2275  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-rab 2785  df-v 3087  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3918  df-pw 3989  df-sn 4005  df-pr 4007  df-op 4011  df-uni 4226  df-br 4430  df-opab 4489  df-mpt 4490  df-id 4774  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-iota 5571  df-fun 5609  df-fv 5615  df-ipo 16403
This theorem is referenced by:  ipobas  16406  ipolerval  16407  ipotset  16408
  Copyright terms: Public domain W3C validator