![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipostr | Structured version Visualization version Unicode version |
Description: The structure of df-ipo 16410 is a structure defining indexes up to 11. (Contributed by Mario Carneiro, 25-Oct-2015.) |
Ref | Expression |
---|---|
ipostr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 10627 |
. . 3
![]() ![]() ![]() ![]() | |
2 | basendx 15185 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1lt9 10818 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 9nn 10781 |
. . 3
![]() ![]() ![]() ![]() | |
5 | tsetndx 15296 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 1, 2, 3, 4, 5 | strle2 15234 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 10nn 10782 |
. . 3
![]() ![]() ![]() ![]() | |
8 | plendx 15303 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | dec10 11088 |
. . . 4
![]() ![]() ![]() ![]() ![]() | |
10 | 1nn0 10892 |
. . . . 5
![]() ![]() ![]() ![]() | |
11 | 0nn0 10891 |
. . . . 5
![]() ![]() ![]() ![]() | |
12 | 0lt1 10143 |
. . . . 5
![]() ![]() ![]() ![]() | |
13 | 10, 11, 1, 12 | declt 11079 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
14 | 9, 13 | eqbrtri 4425 |
. . 3
![]() ![]() ![]() ![]() ![]() |
15 | 10, 1 | decnncl 11071 |
. . 3
![]() ![]() ![]() ![]() ![]() |
16 | ocndx 15310 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
17 | 7, 8, 14, 15, 16 | strle2 15234 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 9lt10 10819 |
. 2
![]() ![]() ![]() ![]() | |
19 | 6, 17, 18 | strleun 15232 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1671 ax-4 1684 ax-5 1760 ax-6 1807 ax-7 1853 ax-8 1891 ax-9 1898 ax-10 1917 ax-11 1922 ax-12 1935 ax-13 2093 ax-ext 2433 ax-sep 4528 ax-nul 4537 ax-pow 4584 ax-pr 4642 ax-un 6588 ax-cnex 9600 ax-resscn 9601 ax-1cn 9602 ax-icn 9603 ax-addcl 9604 ax-addrcl 9605 ax-mulcl 9606 ax-mulrcl 9607 ax-mulcom 9608 ax-addass 9609 ax-mulass 9610 ax-distr 9611 ax-i2m1 9612 ax-1ne0 9613 ax-1rid 9614 ax-rnegex 9615 ax-rrecex 9616 ax-cnre 9617 ax-pre-lttri 9618 ax-pre-lttrn 9619 ax-pre-ltadd 9620 ax-pre-mulgt0 9621 |
This theorem depends on definitions: df-bi 189 df-or 372 df-an 373 df-3or 987 df-3an 988 df-tru 1449 df-ex 1666 df-nf 1670 df-sb 1800 df-eu 2305 df-mo 2306 df-clab 2440 df-cleq 2446 df-clel 2449 df-nfc 2583 df-ne 2626 df-nel 2627 df-ral 2744 df-rex 2745 df-reu 2746 df-rab 2748 df-v 3049 df-sbc 3270 df-csb 3366 df-dif 3409 df-un 3411 df-in 3413 df-ss 3420 df-pss 3422 df-nul 3734 df-if 3884 df-pw 3955 df-sn 3971 df-pr 3973 df-tp 3975 df-op 3977 df-uni 4202 df-int 4238 df-iun 4283 df-br 4406 df-opab 4465 df-mpt 4466 df-tr 4501 df-eprel 4748 df-id 4752 df-po 4758 df-so 4759 df-fr 4796 df-we 4798 df-xp 4843 df-rel 4844 df-cnv 4845 df-co 4846 df-dm 4847 df-rn 4848 df-res 4849 df-ima 4850 df-pred 5383 df-ord 5429 df-on 5430 df-lim 5431 df-suc 5432 df-iota 5549 df-fun 5587 df-fn 5588 df-f 5589 df-f1 5590 df-fo 5591 df-f1o 5592 df-fv 5593 df-riota 6257 df-ov 6298 df-oprab 6299 df-mpt2 6300 df-om 6698 df-1st 6798 df-2nd 6799 df-wrecs 7033 df-recs 7095 df-rdg 7133 df-1o 7187 df-oadd 7191 df-er 7368 df-en 7575 df-dom 7576 df-sdom 7577 df-fin 7578 df-pnf 9682 df-mnf 9683 df-xr 9684 df-ltxr 9685 df-le 9686 df-sub 9867 df-neg 9868 df-nn 10617 df-2 10675 df-3 10676 df-4 10677 df-5 10678 df-6 10679 df-7 10680 df-8 10681 df-9 10682 df-10 10683 df-n0 10877 df-z 10945 df-dec 11059 df-uz 11167 df-fz 11792 df-struct 15135 df-ndx 15136 df-slot 15137 df-base 15138 df-tset 15221 df-ple 15222 df-ocomp 15223 |
This theorem is referenced by: ipobas 16413 ipolerval 16414 ipotset 16415 |
Copyright terms: Public domain | W3C validator |