MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipolerval Structured version   Unicode version

Theorem ipolerval 15634
Description: Relation of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypothesis
Ref Expression
ipoval.i  |-  I  =  (toInc `  F )
Assertion
Ref Expression
ipolerval  |-  ( F  e.  V  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }  =  ( le `  I ) )
Distinct variable groups:    x, y, F    x, I, y    x, V, y

Proof of Theorem ipolerval
StepHypRef Expression
1 simpl 457 . . . . . . 7  |-  ( ( { x ,  y }  C_  F  /\  x  C_  y )  ->  { x ,  y }  C_  F )
2 vex 3111 . . . . . . . 8  |-  x  e. 
_V
3 vex 3111 . . . . . . . 8  |-  y  e. 
_V
42, 3prss 4176 . . . . . . 7  |-  ( ( x  e.  F  /\  y  e.  F )  <->  { x ,  y } 
C_  F )
51, 4sylibr 212 . . . . . 6  |-  ( ( { x ,  y }  C_  F  /\  x  C_  y )  -> 
( x  e.  F  /\  y  e.  F
) )
65ssopab2i 4770 . . . . 5  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } 
C_  { <. x ,  y >.  |  ( x  e.  F  /\  y  e.  F ) }
7 df-xp 5000 . . . . 5  |-  ( F  X.  F )  =  { <. x ,  y
>.  |  ( x  e.  F  /\  y  e.  F ) }
86, 7sseqtr4i 3532 . . . 4  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } 
C_  ( F  X.  F )
9 xpexg 6704 . . . . 5  |-  ( ( F  e.  V  /\  F  e.  V )  ->  ( F  X.  F
)  e.  _V )
109anidms 645 . . . 4  |-  ( F  e.  V  ->  ( F  X.  F )  e. 
_V )
11 ssexg 4588 . . . 4  |-  ( ( { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) }  C_  ( F  X.  F
)  /\  ( F  X.  F )  e.  _V )  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }  e.  _V )
128, 10, 11sylancr 663 . . 3  |-  ( F  e.  V  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }  e.  _V )
13 ipostr 15631 . . . 4  |-  ( {
<. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } ) >. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
>. ,  <. ( oc
`  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } ) Struct  <. 1 , ; 1 1 >.
14 pleid 14641 . . . 4  |-  le  = Slot  ( le `  ndx )
15 snsspr1 4171 . . . . 5  |-  { <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } >. } 
C_  { <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } >. , 
<. ( oc `  ndx ) ,  ( x  e.  F  |->  U. {
y  e.  F  | 
( y  i^i  x
)  =  (/) } )
>. }
16 ssun2 3663 . . . . 5  |-  { <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } >. , 
<. ( oc `  ndx ) ,  ( x  e.  F  |->  U. {
y  e.  F  | 
( y  i^i  x
)  =  (/) } )
>. }  C_  ( { <. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } ) >. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
>. ,  <. ( oc
`  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } )
1715, 16sstri 3508 . . . 4  |-  { <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } >. } 
C_  ( { <. (
Base `  ndx ) ,  F >. ,  <. (TopSet ` 
ndx ) ,  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )
>. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } >. , 
<. ( oc `  ndx ) ,  ( x  e.  F  |->  U. {
y  e.  F  | 
( y  i^i  x
)  =  (/) } )
>. } )
1813, 14, 17strfv 14515 . . 3  |-  ( {
<. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y
) }  e.  _V  ->  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) }  =  ( le `  ( {
<. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } ) >. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
>. ,  <. ( oc
`  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } ) ) )
1912, 18syl 16 . 2  |-  ( F  e.  V  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }  =  ( le `  ( { <. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } ) >. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
>. ,  <. ( oc
`  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } ) ) )
20 ipoval.i . . . 4  |-  I  =  (toInc `  F )
21 eqid 2462 . . . 4  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }  =  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
2220, 21ipoval 15632 . . 3  |-  ( F  e.  V  ->  I  =  ( { <. (
Base `  ndx ) ,  F >. ,  <. (TopSet ` 
ndx ) ,  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )
>. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } >. , 
<. ( oc `  ndx ) ,  ( x  e.  F  |->  U. {
y  e.  F  | 
( y  i^i  x
)  =  (/) } )
>. } ) )
2322fveq2d 5863 . 2  |-  ( F  e.  V  ->  ( le `  I )  =  ( le `  ( { <. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } ) >. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
>. ,  <. ( oc
`  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } ) ) )
2419, 23eqtr4d 2506 1  |-  ( F  e.  V  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }  =  ( le `  I ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762   {crab 2813   _Vcvv 3108    u. cun 3469    i^i cin 3470    C_ wss 3471   (/)c0 3780   {csn 4022   {cpr 4024   <.cop 4028   U.cuni 4240   {copab 4499    |-> cmpt 4500    X. cxp 4992   ` cfv 5581   1c1 9484  ;cdc 10967   ndxcnx 14478   Basecbs 14481  TopSetcts 14552   lecple 14553   occoc 14554  ordTopcordt 14745  toInccipo 15629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-int 4278  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6674  df-1st 6776  df-2nd 6777  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-fin 7512  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-nn 10528  df-2 10585  df-3 10586  df-4 10587  df-5 10588  df-6 10589  df-7 10590  df-8 10591  df-9 10592  df-10 10593  df-n0 10787  df-z 10856  df-dec 10968  df-uz 11074  df-fz 11664  df-struct 14483  df-ndx 14484  df-slot 14485  df-base 14486  df-tset 14565  df-ple 14566  df-ocomp 14567  df-ipo 15630
This theorem is referenced by:  ipotset  15635  ipole  15636  thlle  18490
  Copyright terms: Public domain W3C validator