MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipodrsima Structured version   Unicode version

Theorem ipodrsima 15997
Description: The monotone image of a directed set. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypotheses
Ref Expression
ipodrsima.f  |-  ( ph  ->  F  Fn  ~P A
)
ipodrsima.m  |-  ( (
ph  /\  ( u  C_  v  /\  v  C_  A ) )  -> 
( F `  u
)  C_  ( F `  v ) )
ipodrsima.d  |-  ( ph  ->  (toInc `  B )  e. Dirset )
ipodrsima.s  |-  ( ph  ->  B  C_  ~P A
)
ipodrsima.a  |-  ( ph  ->  ( F " B
)  e.  V )
Assertion
Ref Expression
ipodrsima  |-  ( ph  ->  (toInc `  ( F " B ) )  e. Dirset
)
Distinct variable groups:    ph, u, v   
u, A, v    u, F, v
Allowed substitution hints:    B( v, u)    V( v, u)

Proof of Theorem ipodrsima
Dummy variables  a 
b  c  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipodrsima.a . . 3  |-  ( ph  ->  ( F " B
)  e.  V )
2 elex 3115 . . 3  |-  ( ( F " B )  e.  V  ->  ( F " B )  e. 
_V )
31, 2syl 16 . 2  |-  ( ph  ->  ( F " B
)  e.  _V )
4 ipodrsima.d . . . . 5  |-  ( ph  ->  (toInc `  B )  e. Dirset )
5 isipodrs 15993 . . . . 5  |-  ( (toInc `  B )  e. Dirset  <->  ( B  e.  _V  /\  B  =/=  (/)  /\  A. a  e.  B  A. b  e.  B  E. c  e.  B  ( a  u.  b )  C_  c
) )
64, 5sylib 196 . . . 4  |-  ( ph  ->  ( B  e.  _V  /\  B  =/=  (/)  /\  A. a  e.  B  A. b  e.  B  E. c  e.  B  (
a  u.  b ) 
C_  c ) )
76simp2d 1007 . . 3  |-  ( ph  ->  B  =/=  (/) )
8 ipodrsima.f . . . . 5  |-  ( ph  ->  F  Fn  ~P A
)
9 ipodrsima.s . . . . 5  |-  ( ph  ->  B  C_  ~P A
)
10 fnimaeq0 5684 . . . . 5  |-  ( ( F  Fn  ~P A  /\  B  C_  ~P A
)  ->  ( ( F " B )  =  (/) 
<->  B  =  (/) ) )
118, 9, 10syl2anc 659 . . . 4  |-  ( ph  ->  ( ( F " B )  =  (/)  <->  B  =  (/) ) )
1211necon3bid 2712 . . 3  |-  ( ph  ->  ( ( F " B )  =/=  (/)  <->  B  =/=  (/) ) )
137, 12mpbird 232 . 2  |-  ( ph  ->  ( F " B
)  =/=  (/) )
146simp3d 1008 . . . 4  |-  ( ph  ->  A. a  e.  B  A. b  e.  B  E. c  e.  B  ( a  u.  b
)  C_  c )
15 simplll 757 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  B )  /\  ( b  e.  B  /\  c  e.  B
) )  /\  a  C_  c )  ->  ph )
16 simpr 459 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  B )  /\  ( b  e.  B  /\  c  e.  B
) )  /\  a  C_  c )  ->  a  C_  c )
179ad2antrr 723 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  B )  /\  (
b  e.  B  /\  c  e.  B )
)  ->  B  C_  ~P A )
18 simprr 755 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  B )  /\  (
b  e.  B  /\  c  e.  B )
)  ->  c  e.  B )
1917, 18sseldd 3490 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  B )  /\  (
b  e.  B  /\  c  e.  B )
)  ->  c  e.  ~P A )
2019elpwid 4009 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  B )  /\  (
b  e.  B  /\  c  e.  B )
)  ->  c  C_  A )
2120adantr 463 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  B )  /\  ( b  e.  B  /\  c  e.  B
) )  /\  a  C_  c )  ->  c  C_  A )
22 vex 3109 . . . . . . . . . . . . 13  |-  a  e. 
_V
23 vex 3109 . . . . . . . . . . . . 13  |-  c  e. 
_V
24 sseq12 3512 . . . . . . . . . . . . . . . 16  |-  ( ( u  =  a  /\  v  =  c )  ->  ( u  C_  v  <->  a 
C_  c ) )
25 sseq1 3510 . . . . . . . . . . . . . . . . 17  |-  ( v  =  c  ->  (
v  C_  A  <->  c  C_  A ) )
2625adantl 464 . . . . . . . . . . . . . . . 16  |-  ( ( u  =  a  /\  v  =  c )  ->  ( v  C_  A  <->  c 
C_  A ) )
2724, 26anbi12d 708 . . . . . . . . . . . . . . 15  |-  ( ( u  =  a  /\  v  =  c )  ->  ( ( u  C_  v  /\  v  C_  A
)  <->  ( a  C_  c  /\  c  C_  A
) ) )
2827anbi2d 701 . . . . . . . . . . . . . 14  |-  ( ( u  =  a  /\  v  =  c )  ->  ( ( ph  /\  ( u  C_  v  /\  v  C_  A ) )  <-> 
( ph  /\  (
a  C_  c  /\  c  C_  A ) ) ) )
29 fveq2 5848 . . . . . . . . . . . . . . 15  |-  ( u  =  a  ->  ( F `  u )  =  ( F `  a ) )
30 fveq2 5848 . . . . . . . . . . . . . . 15  |-  ( v  =  c  ->  ( F `  v )  =  ( F `  c ) )
31 sseq12 3512 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  u
)  =  ( F `
 a )  /\  ( F `  v )  =  ( F `  c ) )  -> 
( ( F `  u )  C_  ( F `  v )  <->  ( F `  a ) 
C_  ( F `  c ) ) )
3229, 30, 31syl2an 475 . . . . . . . . . . . . . 14  |-  ( ( u  =  a  /\  v  =  c )  ->  ( ( F `  u )  C_  ( F `  v )  <->  ( F `  a ) 
C_  ( F `  c ) ) )
3328, 32imbi12d 318 . . . . . . . . . . . . 13  |-  ( ( u  =  a  /\  v  =  c )  ->  ( ( ( ph  /\  ( u  C_  v  /\  v  C_  A ) )  ->  ( F `  u )  C_  ( F `  v )
)  <->  ( ( ph  /\  ( a  C_  c  /\  c  C_  A ) )  ->  ( F `  a )  C_  ( F `  c )
) ) )
34 ipodrsima.m . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( u  C_  v  /\  v  C_  A ) )  -> 
( F `  u
)  C_  ( F `  v ) )
3522, 23, 33, 34vtocl2 3159 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  C_  c  /\  c  C_  A ) )  -> 
( F `  a
)  C_  ( F `  c ) )
3615, 16, 21, 35syl12anc 1224 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  B )  /\  ( b  e.  B  /\  c  e.  B
) )  /\  a  C_  c )  ->  ( F `  a )  C_  ( F `  c
) )
3736ex 432 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  B )  /\  (
b  e.  B  /\  c  e.  B )
)  ->  ( a  C_  c  ->  ( F `  a )  C_  ( F `  c )
) )
38 simplll 757 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  B )  /\  ( b  e.  B  /\  c  e.  B
) )  /\  b  C_  c )  ->  ph )
39 simpr 459 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  B )  /\  ( b  e.  B  /\  c  e.  B
) )  /\  b  C_  c )  ->  b  C_  c )
4020adantr 463 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  B )  /\  ( b  e.  B  /\  c  e.  B
) )  /\  b  C_  c )  ->  c  C_  A )
41 vex 3109 . . . . . . . . . . . . 13  |-  b  e. 
_V
42 sseq12 3512 . . . . . . . . . . . . . . . 16  |-  ( ( u  =  b  /\  v  =  c )  ->  ( u  C_  v  <->  b 
C_  c ) )
4325adantl 464 . . . . . . . . . . . . . . . 16  |-  ( ( u  =  b  /\  v  =  c )  ->  ( v  C_  A  <->  c 
C_  A ) )
4442, 43anbi12d 708 . . . . . . . . . . . . . . 15  |-  ( ( u  =  b  /\  v  =  c )  ->  ( ( u  C_  v  /\  v  C_  A
)  <->  ( b  C_  c  /\  c  C_  A
) ) )
4544anbi2d 701 . . . . . . . . . . . . . 14  |-  ( ( u  =  b  /\  v  =  c )  ->  ( ( ph  /\  ( u  C_  v  /\  v  C_  A ) )  <-> 
( ph  /\  (
b  C_  c  /\  c  C_  A ) ) ) )
46 fveq2 5848 . . . . . . . . . . . . . . 15  |-  ( u  =  b  ->  ( F `  u )  =  ( F `  b ) )
47 sseq12 3512 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  u
)  =  ( F `
 b )  /\  ( F `  v )  =  ( F `  c ) )  -> 
( ( F `  u )  C_  ( F `  v )  <->  ( F `  b ) 
C_  ( F `  c ) ) )
4846, 30, 47syl2an 475 . . . . . . . . . . . . . 14  |-  ( ( u  =  b  /\  v  =  c )  ->  ( ( F `  u )  C_  ( F `  v )  <->  ( F `  b ) 
C_  ( F `  c ) ) )
4945, 48imbi12d 318 . . . . . . . . . . . . 13  |-  ( ( u  =  b  /\  v  =  c )  ->  ( ( ( ph  /\  ( u  C_  v  /\  v  C_  A ) )  ->  ( F `  u )  C_  ( F `  v )
)  <->  ( ( ph  /\  ( b  C_  c  /\  c  C_  A ) )  ->  ( F `  b )  C_  ( F `  c )
) ) )
5041, 23, 49, 34vtocl2 3159 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( b  C_  c  /\  c  C_  A ) )  -> 
( F `  b
)  C_  ( F `  c ) )
5138, 39, 40, 50syl12anc 1224 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  B )  /\  ( b  e.  B  /\  c  e.  B
) )  /\  b  C_  c )  ->  ( F `  b )  C_  ( F `  c
) )
5251ex 432 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  B )  /\  (
b  e.  B  /\  c  e.  B )
)  ->  ( b  C_  c  ->  ( F `  b )  C_  ( F `  c )
) )
5337, 52anim12d 561 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  B )  /\  (
b  e.  B  /\  c  e.  B )
)  ->  ( (
a  C_  c  /\  b  C_  c )  -> 
( ( F `  a )  C_  ( F `  c )  /\  ( F `  b
)  C_  ( F `  c ) ) ) )
54 unss 3664 . . . . . . . . 9  |-  ( ( a  C_  c  /\  b  C_  c )  <->  ( a  u.  b )  C_  c
)
55 unss 3664 . . . . . . . . 9  |-  ( ( ( F `  a
)  C_  ( F `  c )  /\  ( F `  b )  C_  ( F `  c
) )  <->  ( ( F `  a )  u.  ( F `  b
) )  C_  ( F `  c )
)
5653, 54, 553imtr3g 269 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  B )  /\  (
b  e.  B  /\  c  e.  B )
)  ->  ( (
a  u.  b ) 
C_  c  ->  (
( F `  a
)  u.  ( F `
 b ) ) 
C_  ( F `  c ) ) )
5756anassrs 646 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  B )  /\  b  e.  B
)  /\  c  e.  B )  ->  (
( a  u.  b
)  C_  c  ->  ( ( F `  a
)  u.  ( F `
 b ) ) 
C_  ( F `  c ) ) )
5857reximdva 2929 . . . . . 6  |-  ( ( ( ph  /\  a  e.  B )  /\  b  e.  B )  ->  ( E. c  e.  B  ( a  u.  b
)  C_  c  ->  E. c  e.  B  ( ( F `  a
)  u.  ( F `
 b ) ) 
C_  ( F `  c ) ) )
5958ralimdva 2862 . . . . 5  |-  ( (
ph  /\  a  e.  B )  ->  ( A. b  e.  B  E. c  e.  B  ( a  u.  b
)  C_  c  ->  A. b  e.  B  E. c  e.  B  (
( F `  a
)  u.  ( F `
 b ) ) 
C_  ( F `  c ) ) )
6059ralimdva 2862 . . . 4  |-  ( ph  ->  ( A. a  e.  B  A. b  e.  B  E. c  e.  B  ( a  u.  b )  C_  c  ->  A. a  e.  B  A. b  e.  B  E. c  e.  B  ( ( F `  a )  u.  ( F `  b )
)  C_  ( F `  c ) ) )
6114, 60mpd 15 . . 3  |-  ( ph  ->  A. a  e.  B  A. b  e.  B  E. c  e.  B  ( ( F `  a )  u.  ( F `  b )
)  C_  ( F `  c ) )
62 uneq1 3637 . . . . . . . . 9  |-  ( x  =  ( F `  a )  ->  (
x  u.  y )  =  ( ( F `
 a )  u.  y ) )
6362sseq1d 3516 . . . . . . . 8  |-  ( x  =  ( F `  a )  ->  (
( x  u.  y
)  C_  z  <->  ( ( F `  a )  u.  y )  C_  z
) )
6463rexbidv 2965 . . . . . . 7  |-  ( x  =  ( F `  a )  ->  ( E. z  e.  ( F " B ) ( x  u.  y ) 
C_  z  <->  E. z  e.  ( F " B
) ( ( F `
 a )  u.  y )  C_  z
) )
6564ralbidv 2893 . . . . . 6  |-  ( x  =  ( F `  a )  ->  ( A. y  e.  ( F " B ) E. z  e.  ( F
" B ) ( x  u.  y ) 
C_  z  <->  A. y  e.  ( F " B
) E. z  e.  ( F " B
) ( ( F `
 a )  u.  y )  C_  z
) )
6665ralima 6127 . . . . 5  |-  ( ( F  Fn  ~P A  /\  B  C_  ~P A
)  ->  ( A. x  e.  ( F " B ) A. y  e.  ( F " B
) E. z  e.  ( F " B
) ( x  u.  y )  C_  z  <->  A. a  e.  B  A. y  e.  ( F " B ) E. z  e.  ( F " B
) ( ( F `
 a )  u.  y )  C_  z
) )
678, 9, 66syl2anc 659 . . . 4  |-  ( ph  ->  ( A. x  e.  ( F " B
) A. y  e.  ( F " B
) E. z  e.  ( F " B
) ( x  u.  y )  C_  z  <->  A. a  e.  B  A. y  e.  ( F " B ) E. z  e.  ( F " B
) ( ( F `
 a )  u.  y )  C_  z
) )
68 uneq2 3638 . . . . . . . . . 10  |-  ( y  =  ( F `  b )  ->  (
( F `  a
)  u.  y )  =  ( ( F `
 a )  u.  ( F `  b
) ) )
6968sseq1d 3516 . . . . . . . . 9  |-  ( y  =  ( F `  b )  ->  (
( ( F `  a )  u.  y
)  C_  z  <->  ( ( F `  a )  u.  ( F `  b
) )  C_  z
) )
7069rexbidv 2965 . . . . . . . 8  |-  ( y  =  ( F `  b )  ->  ( E. z  e.  ( F " B ) ( ( F `  a
)  u.  y ) 
C_  z  <->  E. z  e.  ( F " B
) ( ( F `
 a )  u.  ( F `  b
) )  C_  z
) )
7170ralima 6127 . . . . . . 7  |-  ( ( F  Fn  ~P A  /\  B  C_  ~P A
)  ->  ( A. y  e.  ( F " B ) E. z  e.  ( F " B
) ( ( F `
 a )  u.  y )  C_  z  <->  A. b  e.  B  E. z  e.  ( F " B ) ( ( F `  a )  u.  ( F `  b ) )  C_  z ) )
728, 9, 71syl2anc 659 . . . . . 6  |-  ( ph  ->  ( A. y  e.  ( F " B
) E. z  e.  ( F " B
) ( ( F `
 a )  u.  y )  C_  z  <->  A. b  e.  B  E. z  e.  ( F " B ) ( ( F `  a )  u.  ( F `  b ) )  C_  z ) )
73 sseq2 3511 . . . . . . . . 9  |-  ( z  =  ( F `  c )  ->  (
( ( F `  a )  u.  ( F `  b )
)  C_  z  <->  ( ( F `  a )  u.  ( F `  b
) )  C_  ( F `  c )
) )
7473rexima 6126 . . . . . . . 8  |-  ( ( F  Fn  ~P A  /\  B  C_  ~P A
)  ->  ( E. z  e.  ( F " B ) ( ( F `  a )  u.  ( F `  b ) )  C_  z 
<->  E. c  e.  B  ( ( F `  a )  u.  ( F `  b )
)  C_  ( F `  c ) ) )
758, 9, 74syl2anc 659 . . . . . . 7  |-  ( ph  ->  ( E. z  e.  ( F " B
) ( ( F `
 a )  u.  ( F `  b
) )  C_  z  <->  E. c  e.  B  ( ( F `  a
)  u.  ( F `
 b ) ) 
C_  ( F `  c ) ) )
7675ralbidv 2893 . . . . . 6  |-  ( ph  ->  ( A. b  e.  B  E. z  e.  ( F " B
) ( ( F `
 a )  u.  ( F `  b
) )  C_  z  <->  A. b  e.  B  E. c  e.  B  (
( F `  a
)  u.  ( F `
 b ) ) 
C_  ( F `  c ) ) )
7772, 76bitrd 253 . . . . 5  |-  ( ph  ->  ( A. y  e.  ( F " B
) E. z  e.  ( F " B
) ( ( F `
 a )  u.  y )  C_  z  <->  A. b  e.  B  E. c  e.  B  (
( F `  a
)  u.  ( F `
 b ) ) 
C_  ( F `  c ) ) )
7877ralbidv 2893 . . . 4  |-  ( ph  ->  ( A. a  e.  B  A. y  e.  ( F " B
) E. z  e.  ( F " B
) ( ( F `
 a )  u.  y )  C_  z  <->  A. a  e.  B  A. b  e.  B  E. c  e.  B  (
( F `  a
)  u.  ( F `
 b ) ) 
C_  ( F `  c ) ) )
7967, 78bitrd 253 . . 3  |-  ( ph  ->  ( A. x  e.  ( F " B
) A. y  e.  ( F " B
) E. z  e.  ( F " B
) ( x  u.  y )  C_  z  <->  A. a  e.  B  A. b  e.  B  E. c  e.  B  (
( F `  a
)  u.  ( F `
 b ) ) 
C_  ( F `  c ) ) )
8061, 79mpbird 232 . 2  |-  ( ph  ->  A. x  e.  ( F " B ) A. y  e.  ( F " B ) E. z  e.  ( F " B ) ( x  u.  y
)  C_  z )
81 isipodrs 15993 . 2  |-  ( (toInc `  ( F " B
) )  e. Dirset  <->  ( ( F " B )  e. 
_V  /\  ( F " B )  =/=  (/)  /\  A. x  e.  ( F " B ) A. y  e.  ( F " B
) E. z  e.  ( F " B
) ( x  u.  y )  C_  z
) )
823, 13, 80, 81syl3anbrc 1178 1  |-  ( ph  ->  (toInc `  ( F " B ) )  e. Dirset
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804   E.wrex 2805   _Vcvv 3106    u. cun 3459    C_ wss 3461   (/)c0 3783   ~Pcpw 3999   "cima 4991    Fn wfn 5565   ` cfv 5570  Dirsetcdrs 15758  toInccipo 15983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-fz 11676  df-struct 14721  df-ndx 14722  df-slot 14723  df-base 14724  df-tset 14806  df-ple 14807  df-ocomp 14808  df-preset 15759  df-drs 15760  df-poset 15777  df-ipo 15984
This theorem is referenced by:  isacs4lem  16000  isnacs3  30885
  Copyright terms: Public domain W3C validator