MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipodrsima Structured version   Visualization version   Unicode version

Theorem ipodrsima 16489
Description: The monotone image of a directed set. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypotheses
Ref Expression
ipodrsima.f  |-  ( ph  ->  F  Fn  ~P A
)
ipodrsima.m  |-  ( (
ph  /\  ( u  C_  v  /\  v  C_  A ) )  -> 
( F `  u
)  C_  ( F `  v ) )
ipodrsima.d  |-  ( ph  ->  (toInc `  B )  e. Dirset )
ipodrsima.s  |-  ( ph  ->  B  C_  ~P A
)
ipodrsima.a  |-  ( ph  ->  ( F " B
)  e.  V )
Assertion
Ref Expression
ipodrsima  |-  ( ph  ->  (toInc `  ( F " B ) )  e. Dirset
)
Distinct variable groups:    ph, u, v   
u, A, v    u, F, v
Allowed substitution hints:    B( v, u)    V( v, u)

Proof of Theorem ipodrsima
Dummy variables  a 
b  c  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipodrsima.a . . 3  |-  ( ph  ->  ( F " B
)  e.  V )
2 elex 3040 . . 3  |-  ( ( F " B )  e.  V  ->  ( F " B )  e. 
_V )
31, 2syl 17 . 2  |-  ( ph  ->  ( F " B
)  e.  _V )
4 ipodrsima.d . . . . 5  |-  ( ph  ->  (toInc `  B )  e. Dirset )
5 isipodrs 16485 . . . . 5  |-  ( (toInc `  B )  e. Dirset  <->  ( B  e.  _V  /\  B  =/=  (/)  /\  A. a  e.  B  A. b  e.  B  E. c  e.  B  ( a  u.  b )  C_  c
) )
64, 5sylib 201 . . . 4  |-  ( ph  ->  ( B  e.  _V  /\  B  =/=  (/)  /\  A. a  e.  B  A. b  e.  B  E. c  e.  B  (
a  u.  b ) 
C_  c ) )
76simp2d 1043 . . 3  |-  ( ph  ->  B  =/=  (/) )
8 ipodrsima.f . . . . 5  |-  ( ph  ->  F  Fn  ~P A
)
9 ipodrsima.s . . . . 5  |-  ( ph  ->  B  C_  ~P A
)
10 fnimaeq0 5707 . . . . 5  |-  ( ( F  Fn  ~P A  /\  B  C_  ~P A
)  ->  ( ( F " B )  =  (/) 
<->  B  =  (/) ) )
118, 9, 10syl2anc 673 . . . 4  |-  ( ph  ->  ( ( F " B )  =  (/)  <->  B  =  (/) ) )
1211necon3bid 2687 . . 3  |-  ( ph  ->  ( ( F " B )  =/=  (/)  <->  B  =/=  (/) ) )
137, 12mpbird 240 . 2  |-  ( ph  ->  ( F " B
)  =/=  (/) )
146simp3d 1044 . . . 4  |-  ( ph  ->  A. a  e.  B  A. b  e.  B  E. c  e.  B  ( a  u.  b
)  C_  c )
15 simplll 776 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  B )  /\  ( b  e.  B  /\  c  e.  B
) )  /\  a  C_  c )  ->  ph )
16 simpr 468 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  B )  /\  ( b  e.  B  /\  c  e.  B
) )  /\  a  C_  c )  ->  a  C_  c )
179ad2antrr 740 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  B )  /\  (
b  e.  B  /\  c  e.  B )
)  ->  B  C_  ~P A )
18 simprr 774 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  B )  /\  (
b  e.  B  /\  c  e.  B )
)  ->  c  e.  B )
1917, 18sseldd 3419 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  B )  /\  (
b  e.  B  /\  c  e.  B )
)  ->  c  e.  ~P A )
2019elpwid 3952 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  B )  /\  (
b  e.  B  /\  c  e.  B )
)  ->  c  C_  A )
2120adantr 472 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  B )  /\  ( b  e.  B  /\  c  e.  B
) )  /\  a  C_  c )  ->  c  C_  A )
22 vex 3034 . . . . . . . . . . . . 13  |-  a  e. 
_V
23 vex 3034 . . . . . . . . . . . . 13  |-  c  e. 
_V
24 sseq12 3441 . . . . . . . . . . . . . . . 16  |-  ( ( u  =  a  /\  v  =  c )  ->  ( u  C_  v  <->  a 
C_  c ) )
25 sseq1 3439 . . . . . . . . . . . . . . . . 17  |-  ( v  =  c  ->  (
v  C_  A  <->  c  C_  A ) )
2625adantl 473 . . . . . . . . . . . . . . . 16  |-  ( ( u  =  a  /\  v  =  c )  ->  ( v  C_  A  <->  c 
C_  A ) )
2724, 26anbi12d 725 . . . . . . . . . . . . . . 15  |-  ( ( u  =  a  /\  v  =  c )  ->  ( ( u  C_  v  /\  v  C_  A
)  <->  ( a  C_  c  /\  c  C_  A
) ) )
2827anbi2d 718 . . . . . . . . . . . . . 14  |-  ( ( u  =  a  /\  v  =  c )  ->  ( ( ph  /\  ( u  C_  v  /\  v  C_  A ) )  <-> 
( ph  /\  (
a  C_  c  /\  c  C_  A ) ) ) )
29 fveq2 5879 . . . . . . . . . . . . . . 15  |-  ( u  =  a  ->  ( F `  u )  =  ( F `  a ) )
30 fveq2 5879 . . . . . . . . . . . . . . 15  |-  ( v  =  c  ->  ( F `  v )  =  ( F `  c ) )
31 sseq12 3441 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  u
)  =  ( F `
 a )  /\  ( F `  v )  =  ( F `  c ) )  -> 
( ( F `  u )  C_  ( F `  v )  <->  ( F `  a ) 
C_  ( F `  c ) ) )
3229, 30, 31syl2an 485 . . . . . . . . . . . . . 14  |-  ( ( u  =  a  /\  v  =  c )  ->  ( ( F `  u )  C_  ( F `  v )  <->  ( F `  a ) 
C_  ( F `  c ) ) )
3328, 32imbi12d 327 . . . . . . . . . . . . 13  |-  ( ( u  =  a  /\  v  =  c )  ->  ( ( ( ph  /\  ( u  C_  v  /\  v  C_  A ) )  ->  ( F `  u )  C_  ( F `  v )
)  <->  ( ( ph  /\  ( a  C_  c  /\  c  C_  A ) )  ->  ( F `  a )  C_  ( F `  c )
) ) )
34 ipodrsima.m . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( u  C_  v  /\  v  C_  A ) )  -> 
( F `  u
)  C_  ( F `  v ) )
3522, 23, 33, 34vtocl2 3088 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  C_  c  /\  c  C_  A ) )  -> 
( F `  a
)  C_  ( F `  c ) )
3615, 16, 21, 35syl12anc 1290 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  B )  /\  ( b  e.  B  /\  c  e.  B
) )  /\  a  C_  c )  ->  ( F `  a )  C_  ( F `  c
) )
3736ex 441 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  B )  /\  (
b  e.  B  /\  c  e.  B )
)  ->  ( a  C_  c  ->  ( F `  a )  C_  ( F `  c )
) )
38 simplll 776 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  B )  /\  ( b  e.  B  /\  c  e.  B
) )  /\  b  C_  c )  ->  ph )
39 simpr 468 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  B )  /\  ( b  e.  B  /\  c  e.  B
) )  /\  b  C_  c )  ->  b  C_  c )
4020adantr 472 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  B )  /\  ( b  e.  B  /\  c  e.  B
) )  /\  b  C_  c )  ->  c  C_  A )
41 vex 3034 . . . . . . . . . . . . 13  |-  b  e. 
_V
42 sseq12 3441 . . . . . . . . . . . . . . . 16  |-  ( ( u  =  b  /\  v  =  c )  ->  ( u  C_  v  <->  b 
C_  c ) )
4325adantl 473 . . . . . . . . . . . . . . . 16  |-  ( ( u  =  b  /\  v  =  c )  ->  ( v  C_  A  <->  c 
C_  A ) )
4442, 43anbi12d 725 . . . . . . . . . . . . . . 15  |-  ( ( u  =  b  /\  v  =  c )  ->  ( ( u  C_  v  /\  v  C_  A
)  <->  ( b  C_  c  /\  c  C_  A
) ) )
4544anbi2d 718 . . . . . . . . . . . . . 14  |-  ( ( u  =  b  /\  v  =  c )  ->  ( ( ph  /\  ( u  C_  v  /\  v  C_  A ) )  <-> 
( ph  /\  (
b  C_  c  /\  c  C_  A ) ) ) )
46 fveq2 5879 . . . . . . . . . . . . . . 15  |-  ( u  =  b  ->  ( F `  u )  =  ( F `  b ) )
47 sseq12 3441 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  u
)  =  ( F `
 b )  /\  ( F `  v )  =  ( F `  c ) )  -> 
( ( F `  u )  C_  ( F `  v )  <->  ( F `  b ) 
C_  ( F `  c ) ) )
4846, 30, 47syl2an 485 . . . . . . . . . . . . . 14  |-  ( ( u  =  b  /\  v  =  c )  ->  ( ( F `  u )  C_  ( F `  v )  <->  ( F `  b ) 
C_  ( F `  c ) ) )
4945, 48imbi12d 327 . . . . . . . . . . . . 13  |-  ( ( u  =  b  /\  v  =  c )  ->  ( ( ( ph  /\  ( u  C_  v  /\  v  C_  A ) )  ->  ( F `  u )  C_  ( F `  v )
)  <->  ( ( ph  /\  ( b  C_  c  /\  c  C_  A ) )  ->  ( F `  b )  C_  ( F `  c )
) ) )
5041, 23, 49, 34vtocl2 3088 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( b  C_  c  /\  c  C_  A ) )  -> 
( F `  b
)  C_  ( F `  c ) )
5138, 39, 40, 50syl12anc 1290 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  B )  /\  ( b  e.  B  /\  c  e.  B
) )  /\  b  C_  c )  ->  ( F `  b )  C_  ( F `  c
) )
5251ex 441 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  B )  /\  (
b  e.  B  /\  c  e.  B )
)  ->  ( b  C_  c  ->  ( F `  b )  C_  ( F `  c )
) )
5337, 52anim12d 572 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  B )  /\  (
b  e.  B  /\  c  e.  B )
)  ->  ( (
a  C_  c  /\  b  C_  c )  -> 
( ( F `  a )  C_  ( F `  c )  /\  ( F `  b
)  C_  ( F `  c ) ) ) )
54 unss 3599 . . . . . . . . 9  |-  ( ( a  C_  c  /\  b  C_  c )  <->  ( a  u.  b )  C_  c
)
55 unss 3599 . . . . . . . . 9  |-  ( ( ( F `  a
)  C_  ( F `  c )  /\  ( F `  b )  C_  ( F `  c
) )  <->  ( ( F `  a )  u.  ( F `  b
) )  C_  ( F `  c )
)
5653, 54, 553imtr3g 277 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  B )  /\  (
b  e.  B  /\  c  e.  B )
)  ->  ( (
a  u.  b ) 
C_  c  ->  (
( F `  a
)  u.  ( F `
 b ) ) 
C_  ( F `  c ) ) )
5756anassrs 660 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  B )  /\  b  e.  B
)  /\  c  e.  B )  ->  (
( a  u.  b
)  C_  c  ->  ( ( F `  a
)  u.  ( F `
 b ) ) 
C_  ( F `  c ) ) )
5857reximdva 2858 . . . . . 6  |-  ( ( ( ph  /\  a  e.  B )  /\  b  e.  B )  ->  ( E. c  e.  B  ( a  u.  b
)  C_  c  ->  E. c  e.  B  ( ( F `  a
)  u.  ( F `
 b ) ) 
C_  ( F `  c ) ) )
5958ralimdva 2805 . . . . 5  |-  ( (
ph  /\  a  e.  B )  ->  ( A. b  e.  B  E. c  e.  B  ( a  u.  b
)  C_  c  ->  A. b  e.  B  E. c  e.  B  (
( F `  a
)  u.  ( F `
 b ) ) 
C_  ( F `  c ) ) )
6059ralimdva 2805 . . . 4  |-  ( ph  ->  ( A. a  e.  B  A. b  e.  B  E. c  e.  B  ( a  u.  b )  C_  c  ->  A. a  e.  B  A. b  e.  B  E. c  e.  B  ( ( F `  a )  u.  ( F `  b )
)  C_  ( F `  c ) ) )
6114, 60mpd 15 . . 3  |-  ( ph  ->  A. a  e.  B  A. b  e.  B  E. c  e.  B  ( ( F `  a )  u.  ( F `  b )
)  C_  ( F `  c ) )
62 uneq1 3572 . . . . . . . . 9  |-  ( x  =  ( F `  a )  ->  (
x  u.  y )  =  ( ( F `
 a )  u.  y ) )
6362sseq1d 3445 . . . . . . . 8  |-  ( x  =  ( F `  a )  ->  (
( x  u.  y
)  C_  z  <->  ( ( F `  a )  u.  y )  C_  z
) )
6463rexbidv 2892 . . . . . . 7  |-  ( x  =  ( F `  a )  ->  ( E. z  e.  ( F " B ) ( x  u.  y ) 
C_  z  <->  E. z  e.  ( F " B
) ( ( F `
 a )  u.  y )  C_  z
) )
6564ralbidv 2829 . . . . . 6  |-  ( x  =  ( F `  a )  ->  ( A. y  e.  ( F " B ) E. z  e.  ( F
" B ) ( x  u.  y ) 
C_  z  <->  A. y  e.  ( F " B
) E. z  e.  ( F " B
) ( ( F `
 a )  u.  y )  C_  z
) )
6665ralima 6163 . . . . 5  |-  ( ( F  Fn  ~P A  /\  B  C_  ~P A
)  ->  ( A. x  e.  ( F " B ) A. y  e.  ( F " B
) E. z  e.  ( F " B
) ( x  u.  y )  C_  z  <->  A. a  e.  B  A. y  e.  ( F " B ) E. z  e.  ( F " B
) ( ( F `
 a )  u.  y )  C_  z
) )
678, 9, 66syl2anc 673 . . . 4  |-  ( ph  ->  ( A. x  e.  ( F " B
) A. y  e.  ( F " B
) E. z  e.  ( F " B
) ( x  u.  y )  C_  z  <->  A. a  e.  B  A. y  e.  ( F " B ) E. z  e.  ( F " B
) ( ( F `
 a )  u.  y )  C_  z
) )
68 uneq2 3573 . . . . . . . . . 10  |-  ( y  =  ( F `  b )  ->  (
( F `  a
)  u.  y )  =  ( ( F `
 a )  u.  ( F `  b
) ) )
6968sseq1d 3445 . . . . . . . . 9  |-  ( y  =  ( F `  b )  ->  (
( ( F `  a )  u.  y
)  C_  z  <->  ( ( F `  a )  u.  ( F `  b
) )  C_  z
) )
7069rexbidv 2892 . . . . . . . 8  |-  ( y  =  ( F `  b )  ->  ( E. z  e.  ( F " B ) ( ( F `  a
)  u.  y ) 
C_  z  <->  E. z  e.  ( F " B
) ( ( F `
 a )  u.  ( F `  b
) )  C_  z
) )
7170ralima 6163 . . . . . . 7  |-  ( ( F  Fn  ~P A  /\  B  C_  ~P A
)  ->  ( A. y  e.  ( F " B ) E. z  e.  ( F " B
) ( ( F `
 a )  u.  y )  C_  z  <->  A. b  e.  B  E. z  e.  ( F " B ) ( ( F `  a )  u.  ( F `  b ) )  C_  z ) )
728, 9, 71syl2anc 673 . . . . . 6  |-  ( ph  ->  ( A. y  e.  ( F " B
) E. z  e.  ( F " B
) ( ( F `
 a )  u.  y )  C_  z  <->  A. b  e.  B  E. z  e.  ( F " B ) ( ( F `  a )  u.  ( F `  b ) )  C_  z ) )
73 sseq2 3440 . . . . . . . . 9  |-  ( z  =  ( F `  c )  ->  (
( ( F `  a )  u.  ( F `  b )
)  C_  z  <->  ( ( F `  a )  u.  ( F `  b
) )  C_  ( F `  c )
) )
7473rexima 6162 . . . . . . . 8  |-  ( ( F  Fn  ~P A  /\  B  C_  ~P A
)  ->  ( E. z  e.  ( F " B ) ( ( F `  a )  u.  ( F `  b ) )  C_  z 
<->  E. c  e.  B  ( ( F `  a )  u.  ( F `  b )
)  C_  ( F `  c ) ) )
758, 9, 74syl2anc 673 . . . . . . 7  |-  ( ph  ->  ( E. z  e.  ( F " B
) ( ( F `
 a )  u.  ( F `  b
) )  C_  z  <->  E. c  e.  B  ( ( F `  a
)  u.  ( F `
 b ) ) 
C_  ( F `  c ) ) )
7675ralbidv 2829 . . . . . 6  |-  ( ph  ->  ( A. b  e.  B  E. z  e.  ( F " B
) ( ( F `
 a )  u.  ( F `  b
) )  C_  z  <->  A. b  e.  B  E. c  e.  B  (
( F `  a
)  u.  ( F `
 b ) ) 
C_  ( F `  c ) ) )
7772, 76bitrd 261 . . . . 5  |-  ( ph  ->  ( A. y  e.  ( F " B
) E. z  e.  ( F " B
) ( ( F `
 a )  u.  y )  C_  z  <->  A. b  e.  B  E. c  e.  B  (
( F `  a
)  u.  ( F `
 b ) ) 
C_  ( F `  c ) ) )
7877ralbidv 2829 . . . 4  |-  ( ph  ->  ( A. a  e.  B  A. y  e.  ( F " B
) E. z  e.  ( F " B
) ( ( F `
 a )  u.  y )  C_  z  <->  A. a  e.  B  A. b  e.  B  E. c  e.  B  (
( F `  a
)  u.  ( F `
 b ) ) 
C_  ( F `  c ) ) )
7967, 78bitrd 261 . . 3  |-  ( ph  ->  ( A. x  e.  ( F " B
) A. y  e.  ( F " B
) E. z  e.  ( F " B
) ( x  u.  y )  C_  z  <->  A. a  e.  B  A. b  e.  B  E. c  e.  B  (
( F `  a
)  u.  ( F `
 b ) ) 
C_  ( F `  c ) ) )
8061, 79mpbird 240 . 2  |-  ( ph  ->  A. x  e.  ( F " B ) A. y  e.  ( F " B ) E. z  e.  ( F " B ) ( x  u.  y
)  C_  z )
81 isipodrs 16485 . 2  |-  ( (toInc `  ( F " B
) )  e. Dirset  <->  ( ( F " B )  e. 
_V  /\  ( F " B )  =/=  (/)  /\  A. x  e.  ( F " B ) A. y  e.  ( F " B
) E. z  e.  ( F " B
) ( x  u.  y )  C_  z
) )
823, 13, 80, 81syl3anbrc 1214 1  |-  ( ph  ->  (toInc `  ( F " B ) )  e. Dirset
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757   _Vcvv 3031    u. cun 3388    C_ wss 3390   (/)c0 3722   ~Pcpw 3942   "cima 4842    Fn wfn 5584   ` cfv 5589  Dirsetcdrs 16250  toInccipo 16475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-fz 11811  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-tset 15287  df-ple 15288  df-ocomp 15289  df-preset 16251  df-drs 16252  df-poset 16269  df-ipo 16476
This theorem is referenced by:  isacs4lem  16492  isnacs3  35623
  Copyright terms: Public domain W3C validator