Mathbox for Andrew Salmon < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ipo0 Structured version   Visualization version   Unicode version

Theorem ipo0 36872
 Description: If the identity relation partially orders any class, then that class is the null class. (Contributed by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ipo0

Proof of Theorem ipo0
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 equid 1863 . . . . 5
2 vex 3034 . . . . . 6
32ideq 4992 . . . . 5
41, 3mpbir 214 . . . 4
5 poirr 4771 . . . . 5
65ex 441 . . . 4
74, 6mt2i 122 . . 3
87eq0rdv 3773 . 2
9 po0 4775 . . 3
10 poeq2 4764 . . 3
119, 10mpbiri 241 . 2
128, 11impbii 192 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wb 189   wceq 1452   wcel 1904  c0 3722   class class class wbr 4395   cid 4749   wpo 4758 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pr 4639 This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-br 4396  df-opab 4455  df-id 4754  df-po 4760  df-xp 4845  df-rel 4846 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator