MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipdirilem Structured version   Unicode version

Theorem ipdirilem 25417
Description: Lemma for ipdiri 25418. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1  |-  X  =  ( BaseSet `  U )
ip1i.2  |-  G  =  ( +v `  U
)
ip1i.4  |-  S  =  ( .sOLD `  U )
ip1i.7  |-  P  =  ( .iOLD `  U )
ip1i.9  |-  U  e.  CPreHil
OLD
ipdiri.8  |-  A  e.  X
ipdiri.9  |-  B  e.  X
ipdiri.10  |-  C  e.  X
Assertion
Ref Expression
ipdirilem  |-  ( ( A G B ) P C )  =  ( ( A P C )  +  ( B P C ) )

Proof of Theorem ipdirilem
StepHypRef Expression
1 2cn 10602 . . . . . . 7  |-  2  e.  CC
2 2ne0 10624 . . . . . . 7  |-  2  =/=  0
31, 2recidi 10271 . . . . . 6  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
43oveq1i 6292 . . . . 5  |-  ( ( 2  x.  ( 1  /  2 ) ) S ( A G B ) )  =  ( 1 S ( A G B ) )
5 ip1i.9 . . . . . . 7  |-  U  e.  CPreHil
OLD
65phnvi 25404 . . . . . 6  |-  U  e.  NrmCVec
7 halfcn 10751 . . . . . . 7  |-  ( 1  /  2 )  e.  CC
8 ipdiri.8 . . . . . . . 8  |-  A  e.  X
9 ipdiri.9 . . . . . . . 8  |-  B  e.  X
10 ip1i.1 . . . . . . . . 9  |-  X  =  ( BaseSet `  U )
11 ip1i.2 . . . . . . . . 9  |-  G  =  ( +v `  U
)
1210, 11nvgcl 25186 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X )
136, 8, 9, 12mp3an 1324 . . . . . . 7  |-  ( A G B )  e.  X
141, 7, 133pm3.2i 1174 . . . . . 6  |-  ( 2  e.  CC  /\  (
1  /  2 )  e.  CC  /\  ( A G B )  e.  X )
15 ip1i.4 . . . . . . 7  |-  S  =  ( .sOLD `  U )
1610, 15nvsass 25196 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  (
2  e.  CC  /\  ( 1  /  2
)  e.  CC  /\  ( A G B )  e.  X ) )  ->  ( ( 2  x.  ( 1  / 
2 ) ) S ( A G B ) )  =  ( 2 S ( ( 1  /  2 ) S ( A G B ) ) ) )
176, 14, 16mp2an 672 . . . . 5  |-  ( ( 2  x.  ( 1  /  2 ) ) S ( A G B ) )  =  ( 2 S ( ( 1  /  2
) S ( A G B ) ) )
1810, 15nvsid 25195 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  ( A G B )  e.  X )  ->  (
1 S ( A G B ) )  =  ( A G B ) )
196, 13, 18mp2an 672 . . . . 5  |-  ( 1 S ( A G B ) )  =  ( A G B )
204, 17, 193eqtr3i 2504 . . . 4  |-  ( 2 S ( ( 1  /  2 ) S ( A G B ) ) )  =  ( A G B )
2120oveq1i 6292 . . 3  |-  ( ( 2 S ( ( 1  /  2 ) S ( A G B ) ) ) P C )  =  ( ( A G B ) P C )
22 ip1i.7 . . . 4  |-  P  =  ( .iOLD `  U )
2310, 15nvscl 25194 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  (
1  /  2 )  e.  CC  /\  ( A G B )  e.  X )  ->  (
( 1  /  2
) S ( A G B ) )  e.  X )
246, 7, 13, 23mp3an 1324 . . . 4  |-  ( ( 1  /  2 ) S ( A G B ) )  e.  X
25 ipdiri.10 . . . 4  |-  C  e.  X
2610, 11, 15, 22, 5, 24, 25ip2i 25416 . . 3  |-  ( ( 2 S ( ( 1  /  2 ) S ( A G B ) ) ) P C )  =  ( 2  x.  (
( ( 1  / 
2 ) S ( A G B ) ) P C ) )
2721, 26eqtr3i 2498 . 2  |-  ( ( A G B ) P C )  =  ( 2  x.  (
( ( 1  / 
2 ) S ( A G B ) ) P C ) )
28 neg1cn 10635 . . . . . 6  |-  -u 1  e.  CC
2910, 15nvscl 25194 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  B  e.  X )  ->  ( -u 1 S B )  e.  X )
306, 28, 9, 29mp3an 1324 . . . . 5  |-  ( -u
1 S B )  e.  X
3110, 11nvgcl 25186 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  ( -u 1 S B )  e.  X )  -> 
( A G (
-u 1 S B ) )  e.  X
)
326, 8, 30, 31mp3an 1324 . . . 4  |-  ( A G ( -u 1 S B ) )  e.  X
3310, 15nvscl 25194 . . . 4  |-  ( ( U  e.  NrmCVec  /\  (
1  /  2 )  e.  CC  /\  ( A G ( -u 1 S B ) )  e.  X )  ->  (
( 1  /  2
) S ( A G ( -u 1 S B ) ) )  e.  X )
346, 7, 32, 33mp3an 1324 . . 3  |-  ( ( 1  /  2 ) S ( A G ( -u 1 S B ) ) )  e.  X
3510, 11, 15, 22, 5, 24, 34, 25ip1i 25415 . 2  |-  ( ( ( ( ( 1  /  2 ) S ( A G B ) ) G ( ( 1  /  2
) S ( A G ( -u 1 S B ) ) ) ) P C )  +  ( ( ( ( 1  /  2
) S ( A G B ) ) G ( -u 1 S ( ( 1  /  2 ) S ( A G (
-u 1 S B ) ) ) ) ) P C ) )  =  ( 2  x.  ( ( ( 1  /  2 ) S ( A G B ) ) P C ) )
36 eqid 2467 . . . . . . . . . . . 12  |-  ( 1st `  U )  =  ( 1st `  U )
3736nvvc 25181 . . . . . . . . . . 11  |-  ( U  e.  NrmCVec  ->  ( 1st `  U
)  e.  CVecOLD )
386, 37ax-mp 5 . . . . . . . . . 10  |-  ( 1st `  U )  e.  CVecOLD
3911vafval 25169 . . . . . . . . . . 11  |-  G  =  ( 1st `  ( 1st `  U ) )
4039vcablo 25123 . . . . . . . . . 10  |-  ( ( 1st `  U )  e.  CVecOLD  ->  G  e.  AbelOp )
4138, 40ax-mp 5 . . . . . . . . 9  |-  G  e. 
AbelOp
428, 9pm3.2i 455 . . . . . . . . 9  |-  ( A  e.  X  /\  B  e.  X )
438, 30pm3.2i 455 . . . . . . . . 9  |-  ( A  e.  X  /\  ( -u 1 S B )  e.  X )
4410, 11bafval 25170 . . . . . . . . . 10  |-  X  =  ran  G
4544ablo4 24962 . . . . . . . . 9  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X )  /\  ( A  e.  X  /\  ( -u 1 S B )  e.  X
) )  ->  (
( A G B ) G ( A G ( -u 1 S B ) ) )  =  ( ( A G A ) G ( B G (
-u 1 S B ) ) ) )
4641, 42, 43, 45mp3an 1324 . . . . . . . 8  |-  ( ( A G B ) G ( A G ( -u 1 S B ) ) )  =  ( ( A G A ) G ( B G (
-u 1 S B ) ) )
4715smfval 25171 . . . . . . . . . . 11  |-  S  =  ( 2nd `  ( 1st `  U ) )
4839, 47, 44vc2 25121 . . . . . . . . . 10  |-  ( ( ( 1st `  U
)  e.  CVecOLD  /\  A  e.  X )  ->  ( A G A )  =  ( 2 S A ) )
4938, 8, 48mp2an 672 . . . . . . . . 9  |-  ( A G A )  =  ( 2 S A )
50 eqid 2467 . . . . . . . . . . 11  |-  ( 0vec `  U )  =  (
0vec `  U )
5110, 11, 15, 50nvrinv 25221 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  ( B G ( -u 1 S B ) )  =  ( 0vec `  U
) )
526, 9, 51mp2an 672 . . . . . . . . 9  |-  ( B G ( -u 1 S B ) )  =  ( 0vec `  U
)
5349, 52oveq12i 6294 . . . . . . . 8  |-  ( ( A G A ) G ( B G ( -u 1 S B ) ) )  =  ( ( 2 S A ) G ( 0vec `  U
) )
5410, 15nvscl 25194 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  2  e.  CC  /\  A  e.  X )  ->  (
2 S A )  e.  X )
556, 1, 8, 54mp3an 1324 . . . . . . . . 9  |-  ( 2 S A )  e.  X
5610, 11, 50nv0rid 25203 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  (
2 S A )  e.  X )  -> 
( ( 2 S A ) G (
0vec `  U )
)  =  ( 2 S A ) )
576, 55, 56mp2an 672 . . . . . . . 8  |-  ( ( 2 S A ) G ( 0vec `  U
) )  =  ( 2 S A )
5846, 53, 573eqtri 2500 . . . . . . 7  |-  ( ( A G B ) G ( A G ( -u 1 S B ) ) )  =  ( 2 S A )
5958oveq2i 6293 . . . . . 6  |-  ( ( 1  /  2 ) S ( ( A G B ) G ( A G (
-u 1 S B ) ) ) )  =  ( ( 1  /  2 ) S ( 2 S A ) )
607, 1, 83pm3.2i 1174 . . . . . . 7  |-  ( ( 1  /  2 )  e.  CC  /\  2  e.  CC  /\  A  e.  X )
6110, 15nvsass 25196 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  (
( 1  /  2
)  e.  CC  /\  2  e.  CC  /\  A  e.  X ) )  -> 
( ( ( 1  /  2 )  x.  2 ) S A )  =  ( ( 1  /  2 ) S ( 2 S A ) ) )
626, 60, 61mp2an 672 . . . . . 6  |-  ( ( ( 1  /  2
)  x.  2 ) S A )  =  ( ( 1  / 
2 ) S ( 2 S A ) )
6359, 62eqtr4i 2499 . . . . 5  |-  ( ( 1  /  2 ) S ( ( A G B ) G ( A G (
-u 1 S B ) ) ) )  =  ( ( ( 1  /  2 )  x.  2 ) S A )
647, 13, 323pm3.2i 1174 . . . . . 6  |-  ( ( 1  /  2 )  e.  CC  /\  ( A G B )  e.  X  /\  ( A G ( -u 1 S B ) )  e.  X )
6510, 11, 15nvdi 25198 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  (
( 1  /  2
)  e.  CC  /\  ( A G B )  e.  X  /\  ( A G ( -u 1 S B ) )  e.  X ) )  -> 
( ( 1  / 
2 ) S ( ( A G B ) G ( A G ( -u 1 S B ) ) ) )  =  ( ( ( 1  /  2
) S ( A G B ) ) G ( ( 1  /  2 ) S ( A G (
-u 1 S B ) ) ) ) )
666, 64, 65mp2an 672 . . . . 5  |-  ( ( 1  /  2 ) S ( ( A G B ) G ( A G (
-u 1 S B ) ) ) )  =  ( ( ( 1  /  2 ) S ( A G B ) ) G ( ( 1  / 
2 ) S ( A G ( -u
1 S B ) ) ) )
67 ax-1cn 9546 . . . . . . . 8  |-  1  e.  CC
6867, 1, 2divcan1i 10284 . . . . . . 7  |-  ( ( 1  /  2 )  x.  2 )  =  1
6968oveq1i 6292 . . . . . 6  |-  ( ( ( 1  /  2
)  x.  2 ) S A )  =  ( 1 S A )
7010, 15nvsid 25195 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
1 S A )  =  A )
716, 8, 70mp2an 672 . . . . . 6  |-  ( 1 S A )  =  A
7269, 71eqtri 2496 . . . . 5  |-  ( ( ( 1  /  2
)  x.  2 ) S A )  =  A
7363, 66, 723eqtr3i 2504 . . . 4  |-  ( ( ( 1  /  2
) S ( A G B ) ) G ( ( 1  /  2 ) S ( A G (
-u 1 S B ) ) ) )  =  A
7473oveq1i 6292 . . 3  |-  ( ( ( ( 1  / 
2 ) S ( A G B ) ) G ( ( 1  /  2 ) S ( A G ( -u 1 S B ) ) ) ) P C )  =  ( A P C )
7528, 7mulcomi 9598 . . . . . . . . 9  |-  ( -u
1  x.  ( 1  /  2 ) )  =  ( ( 1  /  2 )  x.  -u 1 )
7675oveq1i 6292 . . . . . . . 8  |-  ( (
-u 1  x.  (
1  /  2 ) ) S ( A G ( -u 1 S B ) ) )  =  ( ( ( 1  /  2 )  x.  -u 1 ) S ( A G (
-u 1 S B ) ) )
7728, 7, 323pm3.2i 1174 . . . . . . . . 9  |-  ( -u
1  e.  CC  /\  ( 1  /  2
)  e.  CC  /\  ( A G ( -u
1 S B ) )  e.  X )
7810, 15nvsass 25196 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  ( -u 1  e.  CC  /\  ( 1  /  2
)  e.  CC  /\  ( A G ( -u
1 S B ) )  e.  X ) )  ->  ( ( -u 1  x.  ( 1  /  2 ) ) S ( A G ( -u 1 S B ) ) )  =  ( -u 1 S ( ( 1  /  2 ) S ( A G (
-u 1 S B ) ) ) ) )
796, 77, 78mp2an 672 . . . . . . . 8  |-  ( (
-u 1  x.  (
1  /  2 ) ) S ( A G ( -u 1 S B ) ) )  =  ( -u 1 S ( ( 1  /  2 ) S ( A G (
-u 1 S B ) ) ) )
807, 28, 323pm3.2i 1174 . . . . . . . . . 10  |-  ( ( 1  /  2 )  e.  CC  /\  -u 1  e.  CC  /\  ( A G ( -u 1 S B ) )  e.  X )
8110, 15nvsass 25196 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  (
( 1  /  2
)  e.  CC  /\  -u 1  e.  CC  /\  ( A G ( -u
1 S B ) )  e.  X ) )  ->  ( (
( 1  /  2
)  x.  -u 1
) S ( A G ( -u 1 S B ) ) )  =  ( ( 1  /  2 ) S ( -u 1 S ( A G (
-u 1 S B ) ) ) ) )
826, 80, 81mp2an 672 . . . . . . . . 9  |-  ( ( ( 1  /  2
)  x.  -u 1
) S ( A G ( -u 1 S B ) ) )  =  ( ( 1  /  2 ) S ( -u 1 S ( A G (
-u 1 S B ) ) ) )
8328, 8, 303pm3.2i 1174 . . . . . . . . . . . 12  |-  ( -u
1  e.  CC  /\  A  e.  X  /\  ( -u 1 S B )  e.  X )
8410, 11, 15nvdi 25198 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  ( -u 1  e.  CC  /\  A  e.  X  /\  ( -u 1 S B )  e.  X ) )  ->  ( -u 1 S ( A G ( -u 1 S B ) ) )  =  ( ( -u
1 S A ) G ( -u 1 S ( -u 1 S B ) ) ) )
856, 83, 84mp2an 672 . . . . . . . . . . 11  |-  ( -u
1 S ( A G ( -u 1 S B ) ) )  =  ( ( -u
1 S A ) G ( -u 1 S ( -u 1 S B ) ) )
86 neg1mulneg1e1 10749 . . . . . . . . . . . . . 14  |-  ( -u
1  x.  -u 1
)  =  1
8786oveq1i 6292 . . . . . . . . . . . . 13  |-  ( (
-u 1  x.  -u 1
) S B )  =  ( 1 S B )
8828, 28, 93pm3.2i 1174 . . . . . . . . . . . . . 14  |-  ( -u
1  e.  CC  /\  -u 1  e.  CC  /\  B  e.  X )
8910, 15nvsass 25196 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  ( -u 1  e.  CC  /\  -u 1  e.  CC  /\  B  e.  X )
)  ->  ( ( -u 1  x.  -u 1
) S B )  =  ( -u 1 S ( -u 1 S B ) ) )
906, 88, 89mp2an 672 . . . . . . . . . . . . 13  |-  ( (
-u 1  x.  -u 1
) S B )  =  ( -u 1 S ( -u 1 S B ) )
9110, 15nvsid 25195 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  (
1 S B )  =  B )
926, 9, 91mp2an 672 . . . . . . . . . . . . 13  |-  ( 1 S B )  =  B
9387, 90, 923eqtr3i 2504 . . . . . . . . . . . 12  |-  ( -u
1 S ( -u
1 S B ) )  =  B
9493oveq2i 6293 . . . . . . . . . . 11  |-  ( (
-u 1 S A ) G ( -u
1 S ( -u
1 S B ) ) )  =  ( ( -u 1 S A ) G B )
9585, 94eqtri 2496 . . . . . . . . . 10  |-  ( -u
1 S ( A G ( -u 1 S B ) ) )  =  ( ( -u
1 S A ) G B )
9695oveq2i 6293 . . . . . . . . 9  |-  ( ( 1  /  2 ) S ( -u 1 S ( A G ( -u 1 S B ) ) ) )  =  ( ( 1  /  2 ) S ( ( -u
1 S A ) G B ) )
9782, 96eqtri 2496 . . . . . . . 8  |-  ( ( ( 1  /  2
)  x.  -u 1
) S ( A G ( -u 1 S B ) ) )  =  ( ( 1  /  2 ) S ( ( -u 1 S A ) G B ) )
9876, 79, 973eqtr3i 2504 . . . . . . 7  |-  ( -u
1 S ( ( 1  /  2 ) S ( A G ( -u 1 S B ) ) ) )  =  ( ( 1  /  2 ) S ( ( -u
1 S A ) G B ) )
9998oveq2i 6293 . . . . . 6  |-  ( ( ( 1  /  2
) S ( A G B ) ) G ( -u 1 S ( ( 1  /  2 ) S ( A G (
-u 1 S B ) ) ) ) )  =  ( ( ( 1  /  2
) S ( A G B ) ) G ( ( 1  /  2 ) S ( ( -u 1 S A ) G B ) ) )
10010, 15nvscl 25194 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  A  e.  X )  ->  ( -u 1 S A )  e.  X )
1016, 28, 8, 100mp3an 1324 . . . . . . . . 9  |-  ( -u
1 S A )  e.  X
10210, 11nvgcl 25186 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  ( -u 1 S A )  e.  X  /\  B  e.  X )  ->  (
( -u 1 S A ) G B )  e.  X )
1036, 101, 9, 102mp3an 1324 . . . . . . . 8  |-  ( (
-u 1 S A ) G B )  e.  X
1047, 13, 1033pm3.2i 1174 . . . . . . 7  |-  ( ( 1  /  2 )  e.  CC  /\  ( A G B )  e.  X  /\  ( (
-u 1 S A ) G B )  e.  X )
10510, 11, 15nvdi 25198 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  (
( 1  /  2
)  e.  CC  /\  ( A G B )  e.  X  /\  (
( -u 1 S A ) G B )  e.  X ) )  ->  ( ( 1  /  2 ) S ( ( A G B ) G ( ( -u 1 S A ) G B ) ) )  =  ( ( ( 1  /  2 ) S ( A G B ) ) G ( ( 1  /  2
) S ( (
-u 1 S A ) G B ) ) ) )
1066, 104, 105mp2an 672 . . . . . 6  |-  ( ( 1  /  2 ) S ( ( A G B ) G ( ( -u 1 S A ) G B ) ) )  =  ( ( ( 1  /  2 ) S ( A G B ) ) G ( ( 1  /  2
) S ( (
-u 1 S A ) G B ) ) )
10799, 106eqtr4i 2499 . . . . 5  |-  ( ( ( 1  /  2
) S ( A G B ) ) G ( -u 1 S ( ( 1  /  2 ) S ( A G (
-u 1 S B ) ) ) ) )  =  ( ( 1  /  2 ) S ( ( A G B ) G ( ( -u 1 S A ) G B ) ) )
108101, 9pm3.2i 455 . . . . . . . . 9  |-  ( (
-u 1 S A )  e.  X  /\  B  e.  X )
10944ablo4 24962 . . . . . . . . 9  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X )  /\  ( ( -u 1 S A )  e.  X  /\  B  e.  X
) )  ->  (
( A G B ) G ( (
-u 1 S A ) G B ) )  =  ( ( A G ( -u
1 S A ) ) G ( B G B ) ) )
11041, 42, 108, 109mp3an 1324 . . . . . . . 8  |-  ( ( A G B ) G ( ( -u
1 S A ) G B ) )  =  ( ( A G ( -u 1 S A ) ) G ( B G B ) )
11110, 11, 15, 50nvrinv 25221 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A G ( -u 1 S A ) )  =  ( 0vec `  U
) )
1126, 8, 111mp2an 672 . . . . . . . . . 10  |-  ( A G ( -u 1 S A ) )  =  ( 0vec `  U
)
113112oveq1i 6292 . . . . . . . . 9  |-  ( ( A G ( -u
1 S A ) ) G ( B G B ) )  =  ( ( 0vec `  U ) G ( B G B ) )
11410, 11nvgcl 25186 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  B  e.  X )  ->  ( B G B )  e.  X )
1156, 9, 9, 114mp3an 1324 . . . . . . . . . 10  |-  ( B G B )  e.  X
11610, 11, 50nv0lid 25204 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  ( B G B )  e.  X )  ->  (
( 0vec `  U ) G ( B G B ) )  =  ( B G B ) )
1176, 115, 116mp2an 672 . . . . . . . . 9  |-  ( (
0vec `  U ) G ( B G B ) )  =  ( B G B )
118113, 117eqtri 2496 . . . . . . . 8  |-  ( ( A G ( -u
1 S A ) ) G ( B G B ) )  =  ( B G B )
11939, 47, 44vc2 25121 . . . . . . . . 9  |-  ( ( ( 1st `  U
)  e.  CVecOLD  /\  B  e.  X )  ->  ( B G B )  =  ( 2 S B ) )
12038, 9, 119mp2an 672 . . . . . . . 8  |-  ( B G B )  =  ( 2 S B )
121110, 118, 1203eqtri 2500 . . . . . . 7  |-  ( ( A G B ) G ( ( -u
1 S A ) G B ) )  =  ( 2 S B )
122121oveq2i 6293 . . . . . 6  |-  ( ( 1  /  2 ) S ( ( A G B ) G ( ( -u 1 S A ) G B ) ) )  =  ( ( 1  / 
2 ) S ( 2 S B ) )
1237, 1, 93pm3.2i 1174 . . . . . . 7  |-  ( ( 1  /  2 )  e.  CC  /\  2  e.  CC  /\  B  e.  X )
12410, 15nvsass 25196 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  (
( 1  /  2
)  e.  CC  /\  2  e.  CC  /\  B  e.  X ) )  -> 
( ( ( 1  /  2 )  x.  2 ) S B )  =  ( ( 1  /  2 ) S ( 2 S B ) ) )
1256, 123, 124mp2an 672 . . . . . 6  |-  ( ( ( 1  /  2
)  x.  2 ) S B )  =  ( ( 1  / 
2 ) S ( 2 S B ) )
12668oveq1i 6292 . . . . . 6  |-  ( ( ( 1  /  2
)  x.  2 ) S B )  =  ( 1 S B )
127122, 125, 1263eqtr2i 2502 . . . . 5  |-  ( ( 1  /  2 ) S ( ( A G B ) G ( ( -u 1 S A ) G B ) ) )  =  ( 1 S B )
128107, 127, 923eqtri 2500 . . . 4  |-  ( ( ( 1  /  2
) S ( A G B ) ) G ( -u 1 S ( ( 1  /  2 ) S ( A G (
-u 1 S B ) ) ) ) )  =  B
129128oveq1i 6292 . . 3  |-  ( ( ( ( 1  / 
2 ) S ( A G B ) ) G ( -u
1 S ( ( 1  /  2 ) S ( A G ( -u 1 S B ) ) ) ) ) P C )  =  ( B P C )
13074, 129oveq12i 6294 . 2  |-  ( ( ( ( ( 1  /  2 ) S ( A G B ) ) G ( ( 1  /  2
) S ( A G ( -u 1 S B ) ) ) ) P C )  +  ( ( ( ( 1  /  2
) S ( A G B ) ) G ( -u 1 S ( ( 1  /  2 ) S ( A G (
-u 1 S B ) ) ) ) ) P C ) )  =  ( ( A P C )  +  ( B P C ) )
13127, 35, 1303eqtr2i 2502 1  |-  ( ( A G B ) P C )  =  ( ( A P C )  +  ( B P C ) )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   ` cfv 5586  (class class class)co 6282   1stc1st 6779   CCcc 9486   1c1 9489    + caddc 9491    x. cmul 9493   -ucneg 9802    / cdiv 10202   2c2 10581   AbelOpcablo 24956   CVecOLDcvc 25111   NrmCVeccnv 25150   +vcpv 25151   BaseSetcba 25152   .sOLDcns 25153   0veccn0v 25154   .iOLDcdip 25283   CPreHil OLDccphlo 25400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-oi 7931  df-card 8316  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-n0 10792  df-z 10861  df-uz 11079  df-rp 11217  df-fz 11669  df-fzo 11789  df-seq 12071  df-exp 12130  df-hash 12368  df-cj 12889  df-re 12890  df-im 12891  df-sqrt 13025  df-abs 13026  df-clim 13267  df-sum 13465  df-grpo 24866  df-gid 24867  df-ginv 24868  df-ablo 24957  df-vc 25112  df-nv 25158  df-va 25161  df-ba 25162  df-sm 25163  df-0v 25164  df-nmcv 25166  df-dip 25284  df-ph 25401
This theorem is referenced by:  ipdiri  25418
  Copyright terms: Public domain W3C validator