MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipdirilem Structured version   Unicode version

Theorem ipdirilem 24382
Description: Lemma for ipdiri 24383. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1  |-  X  =  ( BaseSet `  U )
ip1i.2  |-  G  =  ( +v `  U
)
ip1i.4  |-  S  =  ( .sOLD `  U )
ip1i.7  |-  P  =  ( .iOLD `  U )
ip1i.9  |-  U  e.  CPreHil
OLD
ipdiri.8  |-  A  e.  X
ipdiri.9  |-  B  e.  X
ipdiri.10  |-  C  e.  X
Assertion
Ref Expression
ipdirilem  |-  ( ( A G B ) P C )  =  ( ( A P C )  +  ( B P C ) )

Proof of Theorem ipdirilem
StepHypRef Expression
1 2cn 10504 . . . . . . 7  |-  2  e.  CC
2 2ne0 10526 . . . . . . 7  |-  2  =/=  0
31, 2recidi 10174 . . . . . 6  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
43oveq1i 6211 . . . . 5  |-  ( ( 2  x.  ( 1  /  2 ) ) S ( A G B ) )  =  ( 1 S ( A G B ) )
5 ip1i.9 . . . . . . 7  |-  U  e.  CPreHil
OLD
65phnvi 24369 . . . . . 6  |-  U  e.  NrmCVec
7 halfcn 10653 . . . . . . 7  |-  ( 1  /  2 )  e.  CC
8 ipdiri.8 . . . . . . . 8  |-  A  e.  X
9 ipdiri.9 . . . . . . . 8  |-  B  e.  X
10 ip1i.1 . . . . . . . . 9  |-  X  =  ( BaseSet `  U )
11 ip1i.2 . . . . . . . . 9  |-  G  =  ( +v `  U
)
1210, 11nvgcl 24151 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X )
136, 8, 9, 12mp3an 1315 . . . . . . 7  |-  ( A G B )  e.  X
141, 7, 133pm3.2i 1166 . . . . . 6  |-  ( 2  e.  CC  /\  (
1  /  2 )  e.  CC  /\  ( A G B )  e.  X )
15 ip1i.4 . . . . . . 7  |-  S  =  ( .sOLD `  U )
1610, 15nvsass 24161 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  (
2  e.  CC  /\  ( 1  /  2
)  e.  CC  /\  ( A G B )  e.  X ) )  ->  ( ( 2  x.  ( 1  / 
2 ) ) S ( A G B ) )  =  ( 2 S ( ( 1  /  2 ) S ( A G B ) ) ) )
176, 14, 16mp2an 672 . . . . 5  |-  ( ( 2  x.  ( 1  /  2 ) ) S ( A G B ) )  =  ( 2 S ( ( 1  /  2
) S ( A G B ) ) )
1810, 15nvsid 24160 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  ( A G B )  e.  X )  ->  (
1 S ( A G B ) )  =  ( A G B ) )
196, 13, 18mp2an 672 . . . . 5  |-  ( 1 S ( A G B ) )  =  ( A G B )
204, 17, 193eqtr3i 2491 . . . 4  |-  ( 2 S ( ( 1  /  2 ) S ( A G B ) ) )  =  ( A G B )
2120oveq1i 6211 . . 3  |-  ( ( 2 S ( ( 1  /  2 ) S ( A G B ) ) ) P C )  =  ( ( A G B ) P C )
22 ip1i.7 . . . 4  |-  P  =  ( .iOLD `  U )
2310, 15nvscl 24159 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  (
1  /  2 )  e.  CC  /\  ( A G B )  e.  X )  ->  (
( 1  /  2
) S ( A G B ) )  e.  X )
246, 7, 13, 23mp3an 1315 . . . 4  |-  ( ( 1  /  2 ) S ( A G B ) )  e.  X
25 ipdiri.10 . . . 4  |-  C  e.  X
2610, 11, 15, 22, 5, 24, 25ip2i 24381 . . 3  |-  ( ( 2 S ( ( 1  /  2 ) S ( A G B ) ) ) P C )  =  ( 2  x.  (
( ( 1  / 
2 ) S ( A G B ) ) P C ) )
2721, 26eqtr3i 2485 . 2  |-  ( ( A G B ) P C )  =  ( 2  x.  (
( ( 1  / 
2 ) S ( A G B ) ) P C ) )
28 neg1cn 10537 . . . . . 6  |-  -u 1  e.  CC
2910, 15nvscl 24159 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  B  e.  X )  ->  ( -u 1 S B )  e.  X )
306, 28, 9, 29mp3an 1315 . . . . 5  |-  ( -u
1 S B )  e.  X
3110, 11nvgcl 24151 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  ( -u 1 S B )  e.  X )  -> 
( A G (
-u 1 S B ) )  e.  X
)
326, 8, 30, 31mp3an 1315 . . . 4  |-  ( A G ( -u 1 S B ) )  e.  X
3310, 15nvscl 24159 . . . 4  |-  ( ( U  e.  NrmCVec  /\  (
1  /  2 )  e.  CC  /\  ( A G ( -u 1 S B ) )  e.  X )  ->  (
( 1  /  2
) S ( A G ( -u 1 S B ) ) )  e.  X )
346, 7, 32, 33mp3an 1315 . . 3  |-  ( ( 1  /  2 ) S ( A G ( -u 1 S B ) ) )  e.  X
3510, 11, 15, 22, 5, 24, 34, 25ip1i 24380 . 2  |-  ( ( ( ( ( 1  /  2 ) S ( A G B ) ) G ( ( 1  /  2
) S ( A G ( -u 1 S B ) ) ) ) P C )  +  ( ( ( ( 1  /  2
) S ( A G B ) ) G ( -u 1 S ( ( 1  /  2 ) S ( A G (
-u 1 S B ) ) ) ) ) P C ) )  =  ( 2  x.  ( ( ( 1  /  2 ) S ( A G B ) ) P C ) )
36 eqid 2454 . . . . . . . . . . . 12  |-  ( 1st `  U )  =  ( 1st `  U )
3736nvvc 24146 . . . . . . . . . . 11  |-  ( U  e.  NrmCVec  ->  ( 1st `  U
)  e.  CVecOLD )
386, 37ax-mp 5 . . . . . . . . . 10  |-  ( 1st `  U )  e.  CVecOLD
3911vafval 24134 . . . . . . . . . . 11  |-  G  =  ( 1st `  ( 1st `  U ) )
4039vcablo 24088 . . . . . . . . . 10  |-  ( ( 1st `  U )  e.  CVecOLD  ->  G  e.  AbelOp )
4138, 40ax-mp 5 . . . . . . . . 9  |-  G  e. 
AbelOp
428, 9pm3.2i 455 . . . . . . . . 9  |-  ( A  e.  X  /\  B  e.  X )
438, 30pm3.2i 455 . . . . . . . . 9  |-  ( A  e.  X  /\  ( -u 1 S B )  e.  X )
4410, 11bafval 24135 . . . . . . . . . 10  |-  X  =  ran  G
4544ablo4 23927 . . . . . . . . 9  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X )  /\  ( A  e.  X  /\  ( -u 1 S B )  e.  X
) )  ->  (
( A G B ) G ( A G ( -u 1 S B ) ) )  =  ( ( A G A ) G ( B G (
-u 1 S B ) ) ) )
4641, 42, 43, 45mp3an 1315 . . . . . . . 8  |-  ( ( A G B ) G ( A G ( -u 1 S B ) ) )  =  ( ( A G A ) G ( B G (
-u 1 S B ) ) )
4715smfval 24136 . . . . . . . . . . 11  |-  S  =  ( 2nd `  ( 1st `  U ) )
4839, 47, 44vc2 24086 . . . . . . . . . 10  |-  ( ( ( 1st `  U
)  e.  CVecOLD  /\  A  e.  X )  ->  ( A G A )  =  ( 2 S A ) )
4938, 8, 48mp2an 672 . . . . . . . . 9  |-  ( A G A )  =  ( 2 S A )
50 eqid 2454 . . . . . . . . . . 11  |-  ( 0vec `  U )  =  (
0vec `  U )
5110, 11, 15, 50nvrinv 24186 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  ( B G ( -u 1 S B ) )  =  ( 0vec `  U
) )
526, 9, 51mp2an 672 . . . . . . . . 9  |-  ( B G ( -u 1 S B ) )  =  ( 0vec `  U
)
5349, 52oveq12i 6213 . . . . . . . 8  |-  ( ( A G A ) G ( B G ( -u 1 S B ) ) )  =  ( ( 2 S A ) G ( 0vec `  U
) )
5410, 15nvscl 24159 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  2  e.  CC  /\  A  e.  X )  ->  (
2 S A )  e.  X )
556, 1, 8, 54mp3an 1315 . . . . . . . . 9  |-  ( 2 S A )  e.  X
5610, 11, 50nv0rid 24168 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  (
2 S A )  e.  X )  -> 
( ( 2 S A ) G (
0vec `  U )
)  =  ( 2 S A ) )
576, 55, 56mp2an 672 . . . . . . . 8  |-  ( ( 2 S A ) G ( 0vec `  U
) )  =  ( 2 S A )
5846, 53, 573eqtri 2487 . . . . . . 7  |-  ( ( A G B ) G ( A G ( -u 1 S B ) ) )  =  ( 2 S A )
5958oveq2i 6212 . . . . . 6  |-  ( ( 1  /  2 ) S ( ( A G B ) G ( A G (
-u 1 S B ) ) ) )  =  ( ( 1  /  2 ) S ( 2 S A ) )
607, 1, 83pm3.2i 1166 . . . . . . 7  |-  ( ( 1  /  2 )  e.  CC  /\  2  e.  CC  /\  A  e.  X )
6110, 15nvsass 24161 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  (
( 1  /  2
)  e.  CC  /\  2  e.  CC  /\  A  e.  X ) )  -> 
( ( ( 1  /  2 )  x.  2 ) S A )  =  ( ( 1  /  2 ) S ( 2 S A ) ) )
626, 60, 61mp2an 672 . . . . . 6  |-  ( ( ( 1  /  2
)  x.  2 ) S A )  =  ( ( 1  / 
2 ) S ( 2 S A ) )
6359, 62eqtr4i 2486 . . . . 5  |-  ( ( 1  /  2 ) S ( ( A G B ) G ( A G (
-u 1 S B ) ) ) )  =  ( ( ( 1  /  2 )  x.  2 ) S A )
647, 13, 323pm3.2i 1166 . . . . . 6  |-  ( ( 1  /  2 )  e.  CC  /\  ( A G B )  e.  X  /\  ( A G ( -u 1 S B ) )  e.  X )
6510, 11, 15nvdi 24163 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  (
( 1  /  2
)  e.  CC  /\  ( A G B )  e.  X  /\  ( A G ( -u 1 S B ) )  e.  X ) )  -> 
( ( 1  / 
2 ) S ( ( A G B ) G ( A G ( -u 1 S B ) ) ) )  =  ( ( ( 1  /  2
) S ( A G B ) ) G ( ( 1  /  2 ) S ( A G (
-u 1 S B ) ) ) ) )
666, 64, 65mp2an 672 . . . . 5  |-  ( ( 1  /  2 ) S ( ( A G B ) G ( A G (
-u 1 S B ) ) ) )  =  ( ( ( 1  /  2 ) S ( A G B ) ) G ( ( 1  / 
2 ) S ( A G ( -u
1 S B ) ) ) )
67 ax-1cn 9452 . . . . . . . 8  |-  1  e.  CC
6867, 1, 2divcan1i 10187 . . . . . . 7  |-  ( ( 1  /  2 )  x.  2 )  =  1
6968oveq1i 6211 . . . . . 6  |-  ( ( ( 1  /  2
)  x.  2 ) S A )  =  ( 1 S A )
7010, 15nvsid 24160 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
1 S A )  =  A )
716, 8, 70mp2an 672 . . . . . 6  |-  ( 1 S A )  =  A
7269, 71eqtri 2483 . . . . 5  |-  ( ( ( 1  /  2
)  x.  2 ) S A )  =  A
7363, 66, 723eqtr3i 2491 . . . 4  |-  ( ( ( 1  /  2
) S ( A G B ) ) G ( ( 1  /  2 ) S ( A G (
-u 1 S B ) ) ) )  =  A
7473oveq1i 6211 . . 3  |-  ( ( ( ( 1  / 
2 ) S ( A G B ) ) G ( ( 1  /  2 ) S ( A G ( -u 1 S B ) ) ) ) P C )  =  ( A P C )
7528, 7mulcomi 9504 . . . . . . . . 9  |-  ( -u
1  x.  ( 1  /  2 ) )  =  ( ( 1  /  2 )  x.  -u 1 )
7675oveq1i 6211 . . . . . . . 8  |-  ( (
-u 1  x.  (
1  /  2 ) ) S ( A G ( -u 1 S B ) ) )  =  ( ( ( 1  /  2 )  x.  -u 1 ) S ( A G (
-u 1 S B ) ) )
7728, 7, 323pm3.2i 1166 . . . . . . . . 9  |-  ( -u
1  e.  CC  /\  ( 1  /  2
)  e.  CC  /\  ( A G ( -u
1 S B ) )  e.  X )
7810, 15nvsass 24161 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  ( -u 1  e.  CC  /\  ( 1  /  2
)  e.  CC  /\  ( A G ( -u
1 S B ) )  e.  X ) )  ->  ( ( -u 1  x.  ( 1  /  2 ) ) S ( A G ( -u 1 S B ) ) )  =  ( -u 1 S ( ( 1  /  2 ) S ( A G (
-u 1 S B ) ) ) ) )
796, 77, 78mp2an 672 . . . . . . . 8  |-  ( (
-u 1  x.  (
1  /  2 ) ) S ( A G ( -u 1 S B ) ) )  =  ( -u 1 S ( ( 1  /  2 ) S ( A G (
-u 1 S B ) ) ) )
807, 28, 323pm3.2i 1166 . . . . . . . . . 10  |-  ( ( 1  /  2 )  e.  CC  /\  -u 1  e.  CC  /\  ( A G ( -u 1 S B ) )  e.  X )
8110, 15nvsass 24161 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  (
( 1  /  2
)  e.  CC  /\  -u 1  e.  CC  /\  ( A G ( -u
1 S B ) )  e.  X ) )  ->  ( (
( 1  /  2
)  x.  -u 1
) S ( A G ( -u 1 S B ) ) )  =  ( ( 1  /  2 ) S ( -u 1 S ( A G (
-u 1 S B ) ) ) ) )
826, 80, 81mp2an 672 . . . . . . . . 9  |-  ( ( ( 1  /  2
)  x.  -u 1
) S ( A G ( -u 1 S B ) ) )  =  ( ( 1  /  2 ) S ( -u 1 S ( A G (
-u 1 S B ) ) ) )
8328, 8, 303pm3.2i 1166 . . . . . . . . . . . 12  |-  ( -u
1  e.  CC  /\  A  e.  X  /\  ( -u 1 S B )  e.  X )
8410, 11, 15nvdi 24163 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  ( -u 1  e.  CC  /\  A  e.  X  /\  ( -u 1 S B )  e.  X ) )  ->  ( -u 1 S ( A G ( -u 1 S B ) ) )  =  ( ( -u
1 S A ) G ( -u 1 S ( -u 1 S B ) ) ) )
856, 83, 84mp2an 672 . . . . . . . . . . 11  |-  ( -u
1 S ( A G ( -u 1 S B ) ) )  =  ( ( -u
1 S A ) G ( -u 1 S ( -u 1 S B ) ) )
86 neg1mulneg1e1 10651 . . . . . . . . . . . . . 14  |-  ( -u
1  x.  -u 1
)  =  1
8786oveq1i 6211 . . . . . . . . . . . . 13  |-  ( (
-u 1  x.  -u 1
) S B )  =  ( 1 S B )
8828, 28, 93pm3.2i 1166 . . . . . . . . . . . . . 14  |-  ( -u
1  e.  CC  /\  -u 1  e.  CC  /\  B  e.  X )
8910, 15nvsass 24161 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  ( -u 1  e.  CC  /\  -u 1  e.  CC  /\  B  e.  X )
)  ->  ( ( -u 1  x.  -u 1
) S B )  =  ( -u 1 S ( -u 1 S B ) ) )
906, 88, 89mp2an 672 . . . . . . . . . . . . 13  |-  ( (
-u 1  x.  -u 1
) S B )  =  ( -u 1 S ( -u 1 S B ) )
9110, 15nvsid 24160 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  (
1 S B )  =  B )
926, 9, 91mp2an 672 . . . . . . . . . . . . 13  |-  ( 1 S B )  =  B
9387, 90, 923eqtr3i 2491 . . . . . . . . . . . 12  |-  ( -u
1 S ( -u
1 S B ) )  =  B
9493oveq2i 6212 . . . . . . . . . . 11  |-  ( (
-u 1 S A ) G ( -u
1 S ( -u
1 S B ) ) )  =  ( ( -u 1 S A ) G B )
9585, 94eqtri 2483 . . . . . . . . . 10  |-  ( -u
1 S ( A G ( -u 1 S B ) ) )  =  ( ( -u
1 S A ) G B )
9695oveq2i 6212 . . . . . . . . 9  |-  ( ( 1  /  2 ) S ( -u 1 S ( A G ( -u 1 S B ) ) ) )  =  ( ( 1  /  2 ) S ( ( -u
1 S A ) G B ) )
9782, 96eqtri 2483 . . . . . . . 8  |-  ( ( ( 1  /  2
)  x.  -u 1
) S ( A G ( -u 1 S B ) ) )  =  ( ( 1  /  2 ) S ( ( -u 1 S A ) G B ) )
9876, 79, 973eqtr3i 2491 . . . . . . 7  |-  ( -u
1 S ( ( 1  /  2 ) S ( A G ( -u 1 S B ) ) ) )  =  ( ( 1  /  2 ) S ( ( -u
1 S A ) G B ) )
9998oveq2i 6212 . . . . . 6  |-  ( ( ( 1  /  2
) S ( A G B ) ) G ( -u 1 S ( ( 1  /  2 ) S ( A G (
-u 1 S B ) ) ) ) )  =  ( ( ( 1  /  2
) S ( A G B ) ) G ( ( 1  /  2 ) S ( ( -u 1 S A ) G B ) ) )
10010, 15nvscl 24159 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  A  e.  X )  ->  ( -u 1 S A )  e.  X )
1016, 28, 8, 100mp3an 1315 . . . . . . . . 9  |-  ( -u
1 S A )  e.  X
10210, 11nvgcl 24151 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  ( -u 1 S A )  e.  X  /\  B  e.  X )  ->  (
( -u 1 S A ) G B )  e.  X )
1036, 101, 9, 102mp3an 1315 . . . . . . . 8  |-  ( (
-u 1 S A ) G B )  e.  X
1047, 13, 1033pm3.2i 1166 . . . . . . 7  |-  ( ( 1  /  2 )  e.  CC  /\  ( A G B )  e.  X  /\  ( (
-u 1 S A ) G B )  e.  X )
10510, 11, 15nvdi 24163 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  (
( 1  /  2
)  e.  CC  /\  ( A G B )  e.  X  /\  (
( -u 1 S A ) G B )  e.  X ) )  ->  ( ( 1  /  2 ) S ( ( A G B ) G ( ( -u 1 S A ) G B ) ) )  =  ( ( ( 1  /  2 ) S ( A G B ) ) G ( ( 1  /  2
) S ( (
-u 1 S A ) G B ) ) ) )
1066, 104, 105mp2an 672 . . . . . 6  |-  ( ( 1  /  2 ) S ( ( A G B ) G ( ( -u 1 S A ) G B ) ) )  =  ( ( ( 1  /  2 ) S ( A G B ) ) G ( ( 1  /  2
) S ( (
-u 1 S A ) G B ) ) )
10799, 106eqtr4i 2486 . . . . 5  |-  ( ( ( 1  /  2
) S ( A G B ) ) G ( -u 1 S ( ( 1  /  2 ) S ( A G (
-u 1 S B ) ) ) ) )  =  ( ( 1  /  2 ) S ( ( A G B ) G ( ( -u 1 S A ) G B ) ) )
108101, 9pm3.2i 455 . . . . . . . . 9  |-  ( (
-u 1 S A )  e.  X  /\  B  e.  X )
10944ablo4 23927 . . . . . . . . 9  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X )  /\  ( ( -u 1 S A )  e.  X  /\  B  e.  X
) )  ->  (
( A G B ) G ( (
-u 1 S A ) G B ) )  =  ( ( A G ( -u
1 S A ) ) G ( B G B ) ) )
11041, 42, 108, 109mp3an 1315 . . . . . . . 8  |-  ( ( A G B ) G ( ( -u
1 S A ) G B ) )  =  ( ( A G ( -u 1 S A ) ) G ( B G B ) )
11110, 11, 15, 50nvrinv 24186 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A G ( -u 1 S A ) )  =  ( 0vec `  U
) )
1126, 8, 111mp2an 672 . . . . . . . . . 10  |-  ( A G ( -u 1 S A ) )  =  ( 0vec `  U
)
113112oveq1i 6211 . . . . . . . . 9  |-  ( ( A G ( -u
1 S A ) ) G ( B G B ) )  =  ( ( 0vec `  U ) G ( B G B ) )
11410, 11nvgcl 24151 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  B  e.  X )  ->  ( B G B )  e.  X )
1156, 9, 9, 114mp3an 1315 . . . . . . . . . 10  |-  ( B G B )  e.  X
11610, 11, 50nv0lid 24169 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  ( B G B )  e.  X )  ->  (
( 0vec `  U ) G ( B G B ) )  =  ( B G B ) )
1176, 115, 116mp2an 672 . . . . . . . . 9  |-  ( (
0vec `  U ) G ( B G B ) )  =  ( B G B )
118113, 117eqtri 2483 . . . . . . . 8  |-  ( ( A G ( -u
1 S A ) ) G ( B G B ) )  =  ( B G B )
11939, 47, 44vc2 24086 . . . . . . . . 9  |-  ( ( ( 1st `  U
)  e.  CVecOLD  /\  B  e.  X )  ->  ( B G B )  =  ( 2 S B ) )
12038, 9, 119mp2an 672 . . . . . . . 8  |-  ( B G B )  =  ( 2 S B )
121110, 118, 1203eqtri 2487 . . . . . . 7  |-  ( ( A G B ) G ( ( -u
1 S A ) G B ) )  =  ( 2 S B )
122121oveq2i 6212 . . . . . 6  |-  ( ( 1  /  2 ) S ( ( A G B ) G ( ( -u 1 S A ) G B ) ) )  =  ( ( 1  / 
2 ) S ( 2 S B ) )
1237, 1, 93pm3.2i 1166 . . . . . . 7  |-  ( ( 1  /  2 )  e.  CC  /\  2  e.  CC  /\  B  e.  X )
12410, 15nvsass 24161 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  (
( 1  /  2
)  e.  CC  /\  2  e.  CC  /\  B  e.  X ) )  -> 
( ( ( 1  /  2 )  x.  2 ) S B )  =  ( ( 1  /  2 ) S ( 2 S B ) ) )
1256, 123, 124mp2an 672 . . . . . 6  |-  ( ( ( 1  /  2
)  x.  2 ) S B )  =  ( ( 1  / 
2 ) S ( 2 S B ) )
12668oveq1i 6211 . . . . . 6  |-  ( ( ( 1  /  2
)  x.  2 ) S B )  =  ( 1 S B )
127122, 125, 1263eqtr2i 2489 . . . . 5  |-  ( ( 1  /  2 ) S ( ( A G B ) G ( ( -u 1 S A ) G B ) ) )  =  ( 1 S B )
128107, 127, 923eqtri 2487 . . . 4  |-  ( ( ( 1  /  2
) S ( A G B ) ) G ( -u 1 S ( ( 1  /  2 ) S ( A G (
-u 1 S B ) ) ) ) )  =  B
129128oveq1i 6211 . . 3  |-  ( ( ( ( 1  / 
2 ) S ( A G B ) ) G ( -u
1 S ( ( 1  /  2 ) S ( A G ( -u 1 S B ) ) ) ) ) P C )  =  ( B P C )
13074, 129oveq12i 6213 . 2  |-  ( ( ( ( ( 1  /  2 ) S ( A G B ) ) G ( ( 1  /  2
) S ( A G ( -u 1 S B ) ) ) ) P C )  +  ( ( ( ( 1  /  2
) S ( A G B ) ) G ( -u 1 S ( ( 1  /  2 ) S ( A G (
-u 1 S B ) ) ) ) ) P C ) )  =  ( ( A P C )  +  ( B P C ) )
13127, 35, 1303eqtr2i 2489 1  |-  ( ( A G B ) P C )  =  ( ( A P C )  +  ( B P C ) )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   ` cfv 5527  (class class class)co 6201   1stc1st 6686   CCcc 9392   1c1 9395    + caddc 9397    x. cmul 9399   -ucneg 9708    / cdiv 10105   2c2 10483   AbelOpcablo 23921   CVecOLDcvc 24076   NrmCVeccnv 24115   +vcpv 24116   BaseSetcba 24117   .sOLDcns 24118   0veccn0v 24119   .iOLDcdip 24248   CPreHil OLDccphlo 24365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-inf2 7959  ax-cnex 9450  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470  ax-pre-mulgt0 9471  ax-pre-sup 9472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-int 4238  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-se 4789  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-isom 5536  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-1st 6688  df-2nd 6689  df-recs 6943  df-rdg 6977  df-1o 7031  df-oadd 7035  df-er 7212  df-en 7422  df-dom 7423  df-sdom 7424  df-fin 7425  df-sup 7803  df-oi 7836  df-card 8221  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-sub 9709  df-neg 9710  df-div 10106  df-nn 10435  df-2 10492  df-3 10493  df-4 10494  df-n0 10692  df-z 10759  df-uz 10974  df-rp 11104  df-fz 11556  df-fzo 11667  df-seq 11925  df-exp 11984  df-hash 12222  df-cj 12707  df-re 12708  df-im 12709  df-sqr 12843  df-abs 12844  df-clim 13085  df-sum 13283  df-grpo 23831  df-gid 23832  df-ginv 23833  df-ablo 23922  df-vc 24077  df-nv 24123  df-va 24126  df-ba 24127  df-sm 24128  df-0v 24129  df-nmcv 24131  df-dip 24249  df-ph 24366
This theorem is referenced by:  ipdiri  24383
  Copyright terms: Public domain W3C validator