MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipdir Unicode version

Theorem ipdir 16375
Description: Distributive law for inner product. Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f  |-  F  =  (Scalar `  W )
phllmhm.h  |-  .,  =  ( .i `  W )
phllmhm.v  |-  V  =  ( Base `  W
)
ipdir.g  |-  .+  =  ( +g  `  W )
ipdir.p  |-  .+^  =  ( +g  `  F )
Assertion
Ref Expression
ipdir  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  .+  B )  .,  C )  =  ( ( A  .,  C
)  .+^  ( B  .,  C ) ) )

Proof of Theorem ipdir
StepHypRef Expression
1 phlsrng.f . . . . . 6  |-  F  =  (Scalar `  W )
2 phllmhm.h . . . . . 6  |-  .,  =  ( .i `  W )
3 phllmhm.v . . . . . 6  |-  V  =  ( Base `  W
)
4 eqid 2253 . . . . . 6  |-  ( x  e.  V  |->  ( x 
.,  C ) )  =  ( x  e.  V  |->  ( x  .,  C ) )
51, 2, 3, 4phllmhm 16368 . . . . 5  |-  ( ( W  e.  PreHil  /\  C  e.  V )  ->  (
x  e.  V  |->  ( x  .,  C ) )  e.  ( W LMHom 
(ringLMod `  F ) ) )
653ad2antr3 1127 . . . 4  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( x  e.  V  |->  ( x 
.,  C ) )  e.  ( W LMHom  (ringLMod `  F ) ) )
7 lmghm 15623 . . . 4  |-  ( ( x  e.  V  |->  ( x  .,  C ) )  e.  ( W LMHom 
(ringLMod `  F ) )  ->  ( x  e.  V  |->  ( x  .,  C ) )  e.  ( W  GrpHom  (ringLMod `  F
) ) )
86, 7syl 17 . . 3  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( x  e.  V  |->  ( x 
.,  C ) )  e.  ( W  GrpHom  (ringLMod `  F ) ) )
9 simpr1 966 . . 3  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  A  e.  V )
10 simpr2 967 . . 3  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  B  e.  V )
11 ipdir.g . . . 4  |-  .+  =  ( +g  `  W )
12 ipdir.p . . . . 5  |-  .+^  =  ( +g  `  F )
13 rlmplusg 15781 . . . . 5  |-  ( +g  `  F )  =  ( +g  `  (ringLMod `  F
) )
1412, 13eqtri 2273 . . . 4  |-  .+^  =  ( +g  `  (ringLMod `  F
) )
153, 11, 14ghmlin 14523 . . 3  |-  ( ( ( x  e.  V  |->  ( x  .,  C
) )  e.  ( W  GrpHom  (ringLMod `  F )
)  /\  A  e.  V  /\  B  e.  V
)  ->  ( (
x  e.  V  |->  ( x  .,  C ) ) `  ( A 
.+  B ) )  =  ( ( ( x  e.  V  |->  ( x  .,  C ) ) `  A ) 
.+^  ( ( x  e.  V  |->  ( x 
.,  C ) ) `
 B ) ) )
168, 9, 10, 15syl3anc 1187 . 2  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( (
x  e.  V  |->  ( x  .,  C ) ) `  ( A 
.+  B ) )  =  ( ( ( x  e.  V  |->  ( x  .,  C ) ) `  A ) 
.+^  ( ( x  e.  V  |->  ( x 
.,  C ) ) `
 B ) ) )
17 phllmod 16366 . . . . 5  |-  ( W  e.  PreHil  ->  W  e.  LMod )
183, 11lmodvacl 15476 . . . . 5  |-  ( ( W  e.  LMod  /\  A  e.  V  /\  B  e.  V )  ->  ( A  .+  B )  e.  V )
1917, 18syl3an1 1220 . . . 4  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  B  e.  V )  ->  ( A  .+  B )  e.  V )
20193adant3r3 1167 . . 3  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( A  .+  B )  e.  V
)
21 oveq1 5717 . . . 4  |-  ( x  =  ( A  .+  B )  ->  (
x  .,  C )  =  ( ( A 
.+  B )  .,  C ) )
22 ovex 5735 . . . 4  |-  ( x 
.,  C )  e. 
_V
2321, 4, 22fvmpt3i 5457 . . 3  |-  ( ( A  .+  B )  e.  V  ->  (
( x  e.  V  |->  ( x  .,  C
) ) `  ( A  .+  B ) )  =  ( ( A 
.+  B )  .,  C ) )
2420, 23syl 17 . 2  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( (
x  e.  V  |->  ( x  .,  C ) ) `  ( A 
.+  B ) )  =  ( ( A 
.+  B )  .,  C ) )
25 oveq1 5717 . . . . 5  |-  ( x  =  A  ->  (
x  .,  C )  =  ( A  .,  C ) )
2625, 4, 22fvmpt3i 5457 . . . 4  |-  ( A  e.  V  ->  (
( x  e.  V  |->  ( x  .,  C
) ) `  A
)  =  ( A 
.,  C ) )
279, 26syl 17 . . 3  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( (
x  e.  V  |->  ( x  .,  C ) ) `  A )  =  ( A  .,  C ) )
28 oveq1 5717 . . . . 5  |-  ( x  =  B  ->  (
x  .,  C )  =  ( B  .,  C ) )
2928, 4, 22fvmpt3i 5457 . . . 4  |-  ( B  e.  V  ->  (
( x  e.  V  |->  ( x  .,  C
) ) `  B
)  =  ( B 
.,  C ) )
3010, 29syl 17 . . 3  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( (
x  e.  V  |->  ( x  .,  C ) ) `  B )  =  ( B  .,  C ) )
3127, 30oveq12d 5728 . 2  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( (
( x  e.  V  |->  ( x  .,  C
) ) `  A
)  .+^  ( ( x  e.  V  |->  ( x 
.,  C ) ) `
 B ) )  =  ( ( A 
.,  C )  .+^  ( B  .,  C ) ) )
3216, 24, 313eqtr3d 2293 1  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  .+  B )  .,  C )  =  ( ( A  .,  C
)  .+^  ( B  .,  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    e. cmpt 3974   ` cfv 4592  (class class class)co 5710   Basecbs 13022   +g cplusg 13082  Scalarcsca 13085   .icip 13087    GrpHom cghm 14515   LModclmod 15462   LMHom clmhm 15611  ringLModcrglmod 15754   PreHilcphl 16360
This theorem is referenced by:  ipdi  16376  ip2di  16377  ipsubdir  16378  ocvlss  16404  lsmcss  16424  cphdir  18472
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-ndx 13025  df-slot 13026  df-sets 13028  df-plusg 13095  df-sca 13098  df-vsca 13099  df-mnd 14202  df-grp 14324  df-ghm 14516  df-lmod 15464  df-lmhm 15614  df-lvec 15691  df-sra 15757  df-rgmod 15758  df-phl 16362
  Copyright terms: Public domain W3C validator