MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcnval Structured version   Unicode version

Theorem ipcnval 13125
Description: Standard inner product on complex numbers. (Contributed by NM, 29-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
ipcnval  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  ( * `  B ) ) )  =  ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( Im `  A )  x.  (
Im `  B )
) ) )

Proof of Theorem ipcnval
StepHypRef Expression
1 cjcl 13087 . . 3  |-  ( B  e.  CC  ->  (
* `  B )  e.  CC )
2 remul 13111 . . 3  |-  ( ( A  e.  CC  /\  ( * `  B
)  e.  CC )  ->  ( Re `  ( A  x.  (
* `  B )
) )  =  ( ( ( Re `  A )  x.  (
Re `  ( * `  B ) ) )  -  ( ( Im
`  A )  x.  ( Im `  (
* `  B )
) ) ) )
31, 2sylan2 472 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  ( * `  B ) ) )  =  ( ( ( Re `  A )  x.  ( Re `  ( * `  B
) ) )  -  ( ( Im `  A )  x.  (
Im `  ( * `  B ) ) ) ) )
4 recj 13106 . . . . 5  |-  ( B  e.  CC  ->  (
Re `  ( * `  B ) )  =  ( Re `  B
) )
54adantl 464 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  (
* `  B )
)  =  ( Re
`  B ) )
65oveq2d 6294 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Re `  ( * `  B ) ) )  =  ( ( Re
`  A )  x.  ( Re `  B
) ) )
7 imcj 13114 . . . . . 6  |-  ( B  e.  CC  ->  (
Im `  ( * `  B ) )  = 
-u ( Im `  B ) )
87adantl 464 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  (
* `  B )
)  =  -u (
Im `  B )
)
98oveq2d 6294 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Im `  ( * `  B ) ) )  =  ( ( Im
`  A )  x.  -u ( Im `  B
) ) )
10 imcl 13093 . . . . . 6  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
1110recnd 9652 . . . . 5  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
12 imcl 13093 . . . . . 6  |-  ( B  e.  CC  ->  (
Im `  B )  e.  RR )
1312recnd 9652 . . . . 5  |-  ( B  e.  CC  ->  (
Im `  B )  e.  CC )
14 mulneg2 10035 . . . . 5  |-  ( ( ( Im `  A
)  e.  CC  /\  ( Im `  B )  e.  CC )  -> 
( ( Im `  A )  x.  -u (
Im `  B )
)  =  -u (
( Im `  A
)  x.  ( Im
`  B ) ) )
1511, 13, 14syl2an 475 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  -u (
Im `  B )
)  =  -u (
( Im `  A
)  x.  ( Im
`  B ) ) )
169, 15eqtrd 2443 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Im `  ( * `  B ) ) )  =  -u ( ( Im
`  A )  x.  ( Im `  B
) ) )
176, 16oveq12d 6296 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  (
* `  B )
) )  -  (
( Im `  A
)  x.  ( Im
`  ( * `  B ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  -u ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
18 recl 13092 . . . . 5  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
1918recnd 9652 . . . 4  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
20 recl 13092 . . . . 5  |-  ( B  e.  CC  ->  (
Re `  B )  e.  RR )
2120recnd 9652 . . . 4  |-  ( B  e.  CC  ->  (
Re `  B )  e.  CC )
22 mulcl 9606 . . . 4  |-  ( ( ( Re `  A
)  e.  CC  /\  ( Re `  B )  e.  CC )  -> 
( ( Re `  A )  x.  (
Re `  B )
)  e.  CC )
2319, 21, 22syl2an 475 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Re `  B )
)  e.  CC )
24 mulcl 9606 . . . 4  |-  ( ( ( Im `  A
)  e.  CC  /\  ( Im `  B )  e.  CC )  -> 
( ( Im `  A )  x.  (
Im `  B )
)  e.  CC )
2511, 13, 24syl2an 475 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Im `  B )
)  e.  CC )
2623, 25subnegd 9974 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  B
) )  -  -u (
( Im `  A
)  x.  ( Im
`  B ) ) )  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
273, 17, 263eqtrd 2447 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  ( * `  B ) ) )  =  ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( Im `  A )  x.  (
Im `  B )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   ` cfv 5569  (class class class)co 6278   CCcc 9520    + caddc 9525    x. cmul 9527    - cmin 9841   -ucneg 9842   *ccj 13078   Recre 13079   Imcim 13080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-po 4744  df-so 4745  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-2 10635  df-cj 13081  df-re 13082  df-im 13083
This theorem is referenced by:  cjmulval  13127  ipcni  13172  ipcnd  13204
  Copyright terms: Public domain W3C validator