MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcnlem2 Structured version   Unicode version

Theorem ipcnlem2 21419
Description: The inner product operation of a complex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ipcn.v  |-  V  =  ( Base `  W
)
ipcn.h  |-  .,  =  ( .i `  W )
ipcn.d  |-  D  =  ( dist `  W
)
ipcn.n  |-  N  =  ( norm `  W
)
ipcn.t  |-  T  =  ( ( R  / 
2 )  /  (
( N `  A
)  +  1 ) )
ipcn.u  |-  U  =  ( ( R  / 
2 )  /  (
( N `  B
)  +  T ) )
ipcn.w  |-  ( ph  ->  W  e.  CPreHil )
ipcn.a  |-  ( ph  ->  A  e.  V )
ipcn.b  |-  ( ph  ->  B  e.  V )
ipcn.r  |-  ( ph  ->  R  e.  RR+ )
ipcn.x  |-  ( ph  ->  X  e.  V )
ipcn.y  |-  ( ph  ->  Y  e.  V )
ipcn.1  |-  ( ph  ->  ( A D X )  <  U )
ipcn.2  |-  ( ph  ->  ( B D Y )  <  T )
Assertion
Ref Expression
ipcnlem2  |-  ( ph  ->  ( abs `  (
( A  .,  B
)  -  ( X 
.,  Y ) ) )  <  R )

Proof of Theorem ipcnlem2
StepHypRef Expression
1 ipcn.w . . 3  |-  ( ph  ->  W  e.  CPreHil )
2 ipcn.a . . 3  |-  ( ph  ->  A  e.  V )
3 ipcn.b . . 3  |-  ( ph  ->  B  e.  V )
4 ipcn.v . . . 4  |-  V  =  ( Base `  W
)
5 ipcn.h . . . 4  |-  .,  =  ( .i `  W )
64, 5cphipcl 21373 . . 3  |-  ( ( W  e.  CPreHil  /\  A  e.  V  /\  B  e.  V )  ->  ( A  .,  B )  e.  CC )
71, 2, 3, 6syl3anc 1228 . 2  |-  ( ph  ->  ( A  .,  B
)  e.  CC )
8 ipcn.x . . 3  |-  ( ph  ->  X  e.  V )
9 ipcn.y . . 3  |-  ( ph  ->  Y  e.  V )
104, 5cphipcl 21373 . . 3  |-  ( ( W  e.  CPreHil  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .,  Y )  e.  CC )
111, 8, 9, 10syl3anc 1228 . 2  |-  ( ph  ->  ( X  .,  Y
)  e.  CC )
124, 5cphipcl 21373 . . 3  |-  ( ( W  e.  CPreHil  /\  A  e.  V  /\  Y  e.  V )  ->  ( A  .,  Y )  e.  CC )
131, 2, 9, 12syl3anc 1228 . 2  |-  ( ph  ->  ( A  .,  Y
)  e.  CC )
14 ipcn.r . . 3  |-  ( ph  ->  R  e.  RR+ )
1514rpred 11252 . 2  |-  ( ph  ->  R  e.  RR )
167, 13subcld 9926 . . . 4  |-  ( ph  ->  ( ( A  .,  B )  -  ( A  .,  Y ) )  e.  CC )
1716abscld 13226 . . 3  |-  ( ph  ->  ( abs `  (
( A  .,  B
)  -  ( A 
.,  Y ) ) )  e.  RR )
18 cphnlm 21354 . . . . . . . . 9  |-  ( W  e.  CPreHil  ->  W  e. NrmMod )
191, 18syl 16 . . . . . . . 8  |-  ( ph  ->  W  e. NrmMod )
20 nlmngp 20921 . . . . . . . 8  |-  ( W  e. NrmMod  ->  W  e. NrmGrp )
2119, 20syl 16 . . . . . . 7  |-  ( ph  ->  W  e. NrmGrp )
22 ipcn.n . . . . . . . 8  |-  N  =  ( norm `  W
)
234, 22nmcl 20870 . . . . . . 7  |-  ( ( W  e. NrmGrp  /\  A  e.  V )  ->  ( N `  A )  e.  RR )
2421, 2, 23syl2anc 661 . . . . . 6  |-  ( ph  ->  ( N `  A
)  e.  RR )
254, 22nmge0 20871 . . . . . . 7  |-  ( ( W  e. NrmGrp  /\  A  e.  V )  ->  0  <_  ( N `  A
) )
2621, 2, 25syl2anc 661 . . . . . 6  |-  ( ph  ->  0  <_  ( N `  A ) )
2724, 26ge0p1rpd 11278 . . . . 5  |-  ( ph  ->  ( ( N `  A )  +  1 )  e.  RR+ )
2827rpred 11252 . . . 4  |-  ( ph  ->  ( ( N `  A )  +  1 )  e.  RR )
29 ngpms 20855 . . . . . 6  |-  ( W  e. NrmGrp  ->  W  e.  MetSp )
3021, 29syl 16 . . . . 5  |-  ( ph  ->  W  e.  MetSp )
31 ipcn.d . . . . . 6  |-  D  =  ( dist `  W
)
324, 31mscl 20699 . . . . 5  |-  ( ( W  e.  MetSp  /\  B  e.  V  /\  Y  e.  V )  ->  ( B D Y )  e.  RR )
3330, 3, 9, 32syl3anc 1228 . . . 4  |-  ( ph  ->  ( B D Y )  e.  RR )
3428, 33remulcld 9620 . . 3  |-  ( ph  ->  ( ( ( N `
 A )  +  1 )  x.  ( B D Y ) )  e.  RR )
3515rehalfcld 10781 . . 3  |-  ( ph  ->  ( R  /  2
)  e.  RR )
3624, 33remulcld 9620 . . . 4  |-  ( ph  ->  ( ( N `  A )  x.  ( B D Y ) )  e.  RR )
37 eqid 2467 . . . . . . . 8  |-  ( -g `  W )  =  (
-g `  W )
385, 4, 37cphsubdi 21390 . . . . . . 7  |-  ( ( W  e.  CPreHil  /\  ( A  e.  V  /\  B  e.  V  /\  Y  e.  V )
)  ->  ( A  .,  ( B ( -g `  W ) Y ) )  =  ( ( A  .,  B )  -  ( A  .,  Y ) ) )
391, 2, 3, 9, 38syl13anc 1230 . . . . . 6  |-  ( ph  ->  ( A  .,  ( B ( -g `  W
) Y ) )  =  ( ( A 
.,  B )  -  ( A  .,  Y ) ) )
4039fveq2d 5868 . . . . 5  |-  ( ph  ->  ( abs `  ( A  .,  ( B (
-g `  W ) Y ) ) )  =  ( abs `  (
( A  .,  B
)  -  ( A 
.,  Y ) ) ) )
41 ngpgrp 20854 . . . . . . . . 9  |-  ( W  e. NrmGrp  ->  W  e.  Grp )
4221, 41syl 16 . . . . . . . 8  |-  ( ph  ->  W  e.  Grp )
434, 37grpsubcl 15919 . . . . . . . 8  |-  ( ( W  e.  Grp  /\  B  e.  V  /\  Y  e.  V )  ->  ( B ( -g `  W ) Y )  e.  V )
4442, 3, 9, 43syl3anc 1228 . . . . . . 7  |-  ( ph  ->  ( B ( -g `  W ) Y )  e.  V )
454, 5, 22ipcau 21416 . . . . . . 7  |-  ( ( W  e.  CPreHil  /\  A  e.  V  /\  ( B ( -g `  W
) Y )  e.  V )  ->  ( abs `  ( A  .,  ( B ( -g `  W
) Y ) ) )  <_  ( ( N `  A )  x.  ( N `  ( B ( -g `  W
) Y ) ) ) )
461, 2, 44, 45syl3anc 1228 . . . . . 6  |-  ( ph  ->  ( abs `  ( A  .,  ( B (
-g `  W ) Y ) ) )  <_  ( ( N `
 A )  x.  ( N `  ( B ( -g `  W
) Y ) ) ) )
4722, 4, 37, 31ngpds 20858 . . . . . . . 8  |-  ( ( W  e. NrmGrp  /\  B  e.  V  /\  Y  e.  V )  ->  ( B D Y )  =  ( N `  ( B ( -g `  W
) Y ) ) )
4821, 3, 9, 47syl3anc 1228 . . . . . . 7  |-  ( ph  ->  ( B D Y )  =  ( N `
 ( B (
-g `  W ) Y ) ) )
4948oveq2d 6298 . . . . . 6  |-  ( ph  ->  ( ( N `  A )  x.  ( B D Y ) )  =  ( ( N `
 A )  x.  ( N `  ( B ( -g `  W
) Y ) ) ) )
5046, 49breqtrrd 4473 . . . . 5  |-  ( ph  ->  ( abs `  ( A  .,  ( B (
-g `  W ) Y ) ) )  <_  ( ( N `
 A )  x.  ( B D Y ) ) )
5140, 50eqbrtrrd 4469 . . . 4  |-  ( ph  ->  ( abs `  (
( A  .,  B
)  -  ( A 
.,  Y ) ) )  <_  ( ( N `  A )  x.  ( B D Y ) ) )
52 msxms 20692 . . . . . . 7  |-  ( W  e.  MetSp  ->  W  e.  *MetSp )
5330, 52syl 16 . . . . . 6  |-  ( ph  ->  W  e.  *MetSp )
544, 31xmsge0 20701 . . . . . 6  |-  ( ( W  e.  *MetSp  /\  B  e.  V  /\  Y  e.  V )  ->  0  <_  ( B D Y ) )
5553, 3, 9, 54syl3anc 1228 . . . . 5  |-  ( ph  ->  0  <_  ( B D Y ) )
5624lep1d 10473 . . . . 5  |-  ( ph  ->  ( N `  A
)  <_  ( ( N `  A )  +  1 ) )
5724, 28, 33, 55, 56lemul1ad 10481 . . . 4  |-  ( ph  ->  ( ( N `  A )  x.  ( B D Y ) )  <_  ( ( ( N `  A )  +  1 )  x.  ( B D Y ) ) )
5817, 36, 34, 51, 57letrd 9734 . . 3  |-  ( ph  ->  ( abs `  (
( A  .,  B
)  -  ( A 
.,  Y ) ) )  <_  ( (
( N `  A
)  +  1 )  x.  ( B D Y ) ) )
59 ipcn.2 . . . . 5  |-  ( ph  ->  ( B D Y )  <  T )
60 ipcn.t . . . . 5  |-  T  =  ( ( R  / 
2 )  /  (
( N `  A
)  +  1 ) )
6159, 60syl6breq 4486 . . . 4  |-  ( ph  ->  ( B D Y )  <  ( ( R  /  2 )  /  ( ( N `
 A )  +  1 ) ) )
6233, 35, 27ltmuldiv2d 11296 . . . 4  |-  ( ph  ->  ( ( ( ( N `  A )  +  1 )  x.  ( B D Y ) )  <  ( R  /  2 )  <->  ( B D Y )  <  (
( R  /  2
)  /  ( ( N `  A )  +  1 ) ) ) )
6361, 62mpbird 232 . . 3  |-  ( ph  ->  ( ( ( N `
 A )  +  1 )  x.  ( B D Y ) )  <  ( R  / 
2 ) )
6417, 34, 35, 58, 63lelttrd 9735 . 2  |-  ( ph  ->  ( abs `  (
( A  .,  B
)  -  ( A 
.,  Y ) ) )  <  ( R  /  2 ) )
6513, 11subcld 9926 . . . 4  |-  ( ph  ->  ( ( A  .,  Y )  -  ( X  .,  Y ) )  e.  CC )
6665abscld 13226 . . 3  |-  ( ph  ->  ( abs `  (
( A  .,  Y
)  -  ( X 
.,  Y ) ) )  e.  RR )
674, 31mscl 20699 . . . . 5  |-  ( ( W  e.  MetSp  /\  A  e.  V  /\  X  e.  V )  ->  ( A D X )  e.  RR )
6830, 2, 8, 67syl3anc 1228 . . . 4  |-  ( ph  ->  ( A D X )  e.  RR )
694, 22nmcl 20870 . . . . . 6  |-  ( ( W  e. NrmGrp  /\  B  e.  V )  ->  ( N `  B )  e.  RR )
7021, 3, 69syl2anc 661 . . . . 5  |-  ( ph  ->  ( N `  B
)  e.  RR )
7114rphalfcld 11264 . . . . . . . 8  |-  ( ph  ->  ( R  /  2
)  e.  RR+ )
7271, 27rpdivcld 11269 . . . . . . 7  |-  ( ph  ->  ( ( R  / 
2 )  /  (
( N `  A
)  +  1 ) )  e.  RR+ )
7360, 72syl5eqel 2559 . . . . . 6  |-  ( ph  ->  T  e.  RR+ )
7473rpred 11252 . . . . 5  |-  ( ph  ->  T  e.  RR )
7570, 74readdcld 9619 . . . 4  |-  ( ph  ->  ( ( N `  B )  +  T
)  e.  RR )
7668, 75remulcld 9620 . . 3  |-  ( ph  ->  ( ( A D X )  x.  (
( N `  B
)  +  T ) )  e.  RR )
774, 22nmcl 20870 . . . . . 6  |-  ( ( W  e. NrmGrp  /\  Y  e.  V )  ->  ( N `  Y )  e.  RR )
7821, 9, 77syl2anc 661 . . . . 5  |-  ( ph  ->  ( N `  Y
)  e.  RR )
7968, 78remulcld 9620 . . . 4  |-  ( ph  ->  ( ( A D X )  x.  ( N `  Y )
)  e.  RR )
805, 4, 37cphsubdir 21389 . . . . . . 7  |-  ( ( W  e.  CPreHil  /\  ( A  e.  V  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( ( A ( -g `  W
) X )  .,  Y )  =  ( ( A  .,  Y
)  -  ( X 
.,  Y ) ) )
811, 2, 8, 9, 80syl13anc 1230 . . . . . 6  |-  ( ph  ->  ( ( A (
-g `  W ) X )  .,  Y
)  =  ( ( A  .,  Y )  -  ( X  .,  Y ) ) )
8281fveq2d 5868 . . . . 5  |-  ( ph  ->  ( abs `  (
( A ( -g `  W ) X ) 
.,  Y ) )  =  ( abs `  (
( A  .,  Y
)  -  ( X 
.,  Y ) ) ) )
834, 37grpsubcl 15919 . . . . . . . 8  |-  ( ( W  e.  Grp  /\  A  e.  V  /\  X  e.  V )  ->  ( A ( -g `  W ) X )  e.  V )
8442, 2, 8, 83syl3anc 1228 . . . . . . 7  |-  ( ph  ->  ( A ( -g `  W ) X )  e.  V )
854, 5, 22ipcau 21416 . . . . . . 7  |-  ( ( W  e.  CPreHil  /\  ( A ( -g `  W
) X )  e.  V  /\  Y  e.  V )  ->  ( abs `  ( ( A ( -g `  W
) X )  .,  Y ) )  <_ 
( ( N `  ( A ( -g `  W
) X ) )  x.  ( N `  Y ) ) )
861, 84, 9, 85syl3anc 1228 . . . . . 6  |-  ( ph  ->  ( abs `  (
( A ( -g `  W ) X ) 
.,  Y ) )  <_  ( ( N `
 ( A (
-g `  W ) X ) )  x.  ( N `  Y
) ) )
8722, 4, 37, 31ngpds 20858 . . . . . . . 8  |-  ( ( W  e. NrmGrp  /\  A  e.  V  /\  X  e.  V )  ->  ( A D X )  =  ( N `  ( A ( -g `  W
) X ) ) )
8821, 2, 8, 87syl3anc 1228 . . . . . . 7  |-  ( ph  ->  ( A D X )  =  ( N `
 ( A (
-g `  W ) X ) ) )
8988oveq1d 6297 . . . . . 6  |-  ( ph  ->  ( ( A D X )  x.  ( N `  Y )
)  =  ( ( N `  ( A ( -g `  W
) X ) )  x.  ( N `  Y ) ) )
9086, 89breqtrrd 4473 . . . . 5  |-  ( ph  ->  ( abs `  (
( A ( -g `  W ) X ) 
.,  Y ) )  <_  ( ( A D X )  x.  ( N `  Y
) ) )
9182, 90eqbrtrrd 4469 . . . 4  |-  ( ph  ->  ( abs `  (
( A  .,  Y
)  -  ( X 
.,  Y ) ) )  <_  ( ( A D X )  x.  ( N `  Y
) ) )
924, 31xmsge0 20701 . . . . . 6  |-  ( ( W  e.  *MetSp  /\  A  e.  V  /\  X  e.  V )  ->  0  <_  ( A D X ) )
9353, 2, 8, 92syl3anc 1228 . . . . 5  |-  ( ph  ->  0  <_  ( A D X ) )
9478, 70resubcld 9983 . . . . . . 7  |-  ( ph  ->  ( ( N `  Y )  -  ( N `  B )
)  e.  RR )
954, 22, 37nm2dif 20879 . . . . . . . . 9  |-  ( ( W  e. NrmGrp  /\  Y  e.  V  /\  B  e.  V )  ->  (
( N `  Y
)  -  ( N `
 B ) )  <_  ( N `  ( Y ( -g `  W
) B ) ) )
9621, 9, 3, 95syl3anc 1228 . . . . . . . 8  |-  ( ph  ->  ( ( N `  Y )  -  ( N `  B )
)  <_  ( N `  ( Y ( -g `  W ) B ) ) )
9722, 4, 37, 31ngpdsr 20859 . . . . . . . . 9  |-  ( ( W  e. NrmGrp  /\  B  e.  V  /\  Y  e.  V )  ->  ( B D Y )  =  ( N `  ( Y ( -g `  W
) B ) ) )
9821, 3, 9, 97syl3anc 1228 . . . . . . . 8  |-  ( ph  ->  ( B D Y )  =  ( N `
 ( Y (
-g `  W ) B ) ) )
9996, 98breqtrrd 4473 . . . . . . 7  |-  ( ph  ->  ( ( N `  Y )  -  ( N `  B )
)  <_  ( B D Y ) )
10033, 74, 59ltled 9728 . . . . . . 7  |-  ( ph  ->  ( B D Y )  <_  T )
10194, 33, 74, 99, 100letrd 9734 . . . . . 6  |-  ( ph  ->  ( ( N `  Y )  -  ( N `  B )
)  <_  T )
10278, 70, 74lesubadd2d 10147 . . . . . 6  |-  ( ph  ->  ( ( ( N `
 Y )  -  ( N `  B ) )  <_  T  <->  ( N `  Y )  <_  (
( N `  B
)  +  T ) ) )
103101, 102mpbid 210 . . . . 5  |-  ( ph  ->  ( N `  Y
)  <_  ( ( N `  B )  +  T ) )
10478, 75, 68, 93, 103lemul2ad 10482 . . . 4  |-  ( ph  ->  ( ( A D X )  x.  ( N `  Y )
)  <_  ( ( A D X )  x.  ( ( N `  B )  +  T
) ) )
10566, 79, 76, 91, 104letrd 9734 . . 3  |-  ( ph  ->  ( abs `  (
( A  .,  Y
)  -  ( X 
.,  Y ) ) )  <_  ( ( A D X )  x.  ( ( N `  B )  +  T
) ) )
106 ipcn.1 . . . . 5  |-  ( ph  ->  ( A D X )  <  U )
107 ipcn.u . . . . 5  |-  U  =  ( ( R  / 
2 )  /  (
( N `  B
)  +  T ) )
108106, 107syl6breq 4486 . . . 4  |-  ( ph  ->  ( A D X )  <  ( ( R  /  2 )  /  ( ( N `
 B )  +  T ) ) )
109 0red 9593 . . . . . 6  |-  ( ph  ->  0  e.  RR )
1104, 22nmge0 20871 . . . . . . 7  |-  ( ( W  e. NrmGrp  /\  B  e.  V )  ->  0  <_  ( N `  B
) )
11121, 3, 110syl2anc 661 . . . . . 6  |-  ( ph  ->  0  <_  ( N `  B ) )
11270, 73ltaddrpd 11281 . . . . . 6  |-  ( ph  ->  ( N `  B
)  <  ( ( N `  B )  +  T ) )
113109, 70, 75, 111, 112lelttrd 9735 . . . . 5  |-  ( ph  ->  0  <  ( ( N `  B )  +  T ) )
114 ltmuldiv 10411 . . . . 5  |-  ( ( ( A D X )  e.  RR  /\  ( R  /  2
)  e.  RR  /\  ( ( ( N `
 B )  +  T )  e.  RR  /\  0  <  ( ( N `  B )  +  T ) ) )  ->  ( (
( A D X )  x.  ( ( N `  B )  +  T ) )  <  ( R  / 
2 )  <->  ( A D X )  <  (
( R  /  2
)  /  ( ( N `  B )  +  T ) ) ) )
11568, 35, 75, 113, 114syl112anc 1232 . . . 4  |-  ( ph  ->  ( ( ( A D X )  x.  ( ( N `  B )  +  T
) )  <  ( R  /  2 )  <->  ( A D X )  <  (
( R  /  2
)  /  ( ( N `  B )  +  T ) ) ) )
116108, 115mpbird 232 . . 3  |-  ( ph  ->  ( ( A D X )  x.  (
( N `  B
)  +  T ) )  <  ( R  /  2 ) )
11766, 76, 35, 105, 116lelttrd 9735 . 2  |-  ( ph  ->  ( abs `  (
( A  .,  Y
)  -  ( X 
.,  Y ) ) )  <  ( R  /  2 ) )
1187, 11, 13, 15, 64, 117abs3lemd 13251 1  |-  ( ph  ->  ( abs `  (
( A  .,  B
)  -  ( X 
.,  Y ) ) )  <  R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1379    e. wcel 1767   class class class wbr 4447   ` cfv 5586  (class class class)co 6282   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489    + caddc 9491    x. cmul 9493    < clt 9624    <_ cle 9625    - cmin 9801    / cdiv 10202   2c2 10581   RR+crp 11216   abscabs 13026   Basecbs 14486   .icip 14556   distcds 14560   Grpcgrp 15723   -gcsg 15726   *MetSpcxme 20555   MetSpcmt 20556   normcnm 20832  NrmGrpcngp 20833  NrmModcnlm 20836   CPreHilccph 21348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-tpos 6952  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ico 11531  df-fz 11669  df-seq 12072  df-exp 12131  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-mulr 14565  df-starv 14566  df-sca 14567  df-vsca 14568  df-ip 14569  df-tset 14570  df-ple 14571  df-ds 14573  df-unif 14574  df-0g 14693  df-topgen 14695  df-xrs 14753  df-mnd 15728  df-mhm 15777  df-grp 15858  df-minusg 15859  df-sbg 15860  df-subg 15993  df-ghm 16060  df-cmn 16596  df-abl 16597  df-mgp 16932  df-ur 16944  df-rng 16988  df-cring 16989  df-oppr 17056  df-dvdsr 17074  df-unit 17075  df-invr 17105  df-dvr 17116  df-rnghom 17148  df-drng 17181  df-subrg 17210  df-staf 17277  df-srng 17278  df-lmod 17297  df-lmhm 17451  df-lvec 17532  df-sra 17601  df-rgmod 17602  df-psmet 18182  df-xmet 18183  df-met 18184  df-bl 18185  df-mopn 18186  df-cnfld 18192  df-phl 18428  df-top 19166  df-bases 19168  df-topon 19169  df-topsp 19170  df-xms 20558  df-ms 20559  df-nm 20838  df-ngp 20839  df-tng 20840  df-nlm 20842  df-clm 21298  df-cph 21350  df-tch 21351
This theorem is referenced by:  ipcnlem1  21420
  Copyright terms: Public domain W3C validator