MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcn Unicode version

Theorem ipcn 19153
Description: The inner product operation of a complex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ipcn.f  |-  .,  =  ( .i f `  W
)
ipcn.j  |-  J  =  ( TopOpen `  W )
ipcn.k  |-  K  =  ( TopOpen ` fld )
Assertion
Ref Expression
ipcn  |-  ( W  e.  CPreHil  ->  .,  e.  (
( J  tX  J
)  Cn  K ) )

Proof of Theorem ipcn
Dummy variables  s 
r  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cphphl 19087 . . . . 5  |-  ( W  e.  CPreHil  ->  W  e.  PreHil )
2 eqid 2404 . . . . . 6  |-  ( Base `  W )  =  (
Base `  W )
3 ipcn.f . . . . . 6  |-  .,  =  ( .i f `  W
)
4 eqid 2404 . . . . . 6  |-  (Scalar `  W )  =  (Scalar `  W )
5 eqid 2404 . . . . . 6  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
62, 3, 4, 5phlipf 16838 . . . . 5  |-  ( W  e.  PreHil  ->  .,  : (
( Base `  W )  X.  ( Base `  W
) ) --> ( Base `  (Scalar `  W )
) )
71, 6syl 16 . . . 4  |-  ( W  e.  CPreHil  ->  .,  : (
( Base `  W )  X.  ( Base `  W
) ) --> ( Base `  (Scalar `  W )
) )
8 cphclm 19105 . . . . 5  |-  ( W  e.  CPreHil  ->  W  e. CMod )
94, 5clmsscn 19057 . . . . 5  |-  ( W  e. CMod  ->  ( Base `  (Scalar `  W ) )  C_  CC )
108, 9syl 16 . . . 4  |-  ( W  e.  CPreHil  ->  ( Base `  (Scalar `  W ) )  C_  CC )
11 fss 5558 . . . 4  |-  ( ( 
.,  : ( (
Base `  W )  X.  ( Base `  W
) ) --> ( Base `  (Scalar `  W )
)  /\  ( Base `  (Scalar `  W )
)  C_  CC )  ->  .,  : ( (
Base `  W )  X.  ( Base `  W
) ) --> CC )
127, 10, 11syl2anc 643 . . 3  |-  ( W  e.  CPreHil  ->  .,  : (
( Base `  W )  X.  ( Base `  W
) ) --> CC )
13 eqid 2404 . . . . . . 7  |-  ( .i
`  W )  =  ( .i `  W
)
14 eqid 2404 . . . . . . 7  |-  ( dist `  W )  =  (
dist `  W )
15 eqid 2404 . . . . . . 7  |-  ( norm `  W )  =  (
norm `  W )
16 eqid 2404 . . . . . . 7  |-  ( ( r  /  2 )  /  ( ( (
norm `  W ) `  x )  +  1 ) )  =  ( ( r  /  2
)  /  ( ( ( norm `  W
) `  x )  +  1 ) )
17 eqid 2404 . . . . . . 7  |-  ( ( r  /  2 )  /  ( ( (
norm `  W ) `  y )  +  ( ( r  /  2
)  /  ( ( ( norm `  W
) `  x )  +  1 ) ) ) )  =  ( ( r  /  2
)  /  ( ( ( norm `  W
) `  y )  +  ( ( r  /  2 )  / 
( ( ( norm `  W ) `  x
)  +  1 ) ) ) )
18 simpll 731 . . . . . . 7  |-  ( ( ( W  e.  CPreHil  /\  ( x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  /\  r  e.  RR+ )  ->  W  e.  CPreHil )
19 simplrl 737 . . . . . . 7  |-  ( ( ( W  e.  CPreHil  /\  ( x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  /\  r  e.  RR+ )  ->  x  e.  (
Base `  W )
)
20 simplrr 738 . . . . . . 7  |-  ( ( ( W  e.  CPreHil  /\  ( x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  /\  r  e.  RR+ )  ->  y  e.  (
Base `  W )
)
21 simpr 448 . . . . . . 7  |-  ( ( ( W  e.  CPreHil  /\  ( x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  /\  r  e.  RR+ )  ->  r  e.  RR+ )
222, 13, 14, 15, 16, 17, 18, 19, 20, 21ipcnlem1 19152 . . . . . 6  |-  ( ( ( W  e.  CPreHil  /\  ( x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  /\  r  e.  RR+ )  ->  E. s  e.  RR+  A. z  e.  ( Base `  W ) A. w  e.  ( Base `  W
) ( ( ( x ( dist `  W
) z )  < 
s  /\  ( y
( dist `  W )
w )  <  s
)  ->  ( abs `  ( ( x ( .i `  W ) y )  -  (
z ( .i `  W ) w ) ) )  <  r
) )
2322ralrimiva 2749 . . . . 5  |-  ( ( W  e.  CPreHil  /\  (
x  e.  ( Base `  W )  /\  y  e.  ( Base `  W
) ) )  ->  A. r  e.  RR+  E. s  e.  RR+  A. z  e.  ( Base `  W
) A. w  e.  ( Base `  W
) ( ( ( x ( dist `  W
) z )  < 
s  /\  ( y
( dist `  W )
w )  <  s
)  ->  ( abs `  ( ( x ( .i `  W ) y )  -  (
z ( .i `  W ) w ) ) )  <  r
) )
24 simplrl 737 . . . . . . . . . . . 12  |-  ( ( ( W  e.  CPreHil  /\  ( x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  /\  ( z  e.  ( Base `  W
)  /\  w  e.  ( Base `  W )
) )  ->  x  e.  ( Base `  W
) )
25 simprl 733 . . . . . . . . . . . 12  |-  ( ( ( W  e.  CPreHil  /\  ( x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  /\  ( z  e.  ( Base `  W
)  /\  w  e.  ( Base `  W )
) )  ->  z  e.  ( Base `  W
) )
2624, 25ovresd 6173 . . . . . . . . . . 11  |-  ( ( ( W  e.  CPreHil  /\  ( x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  /\  ( z  e.  ( Base `  W
)  /\  w  e.  ( Base `  W )
) )  ->  (
x ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) ) z )  =  ( x ( dist `  W
) z ) )
2726breq1d 4182 . . . . . . . . . 10  |-  ( ( ( W  e.  CPreHil  /\  ( x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  /\  ( z  e.  ( Base `  W
)  /\  w  e.  ( Base `  W )
) )  ->  (
( x ( (
dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) z )  <  s  <->  ( x ( dist `  W
) z )  < 
s ) )
28 simplrr 738 . . . . . . . . . . . 12  |-  ( ( ( W  e.  CPreHil  /\  ( x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  /\  ( z  e.  ( Base `  W
)  /\  w  e.  ( Base `  W )
) )  ->  y  e.  ( Base `  W
) )
29 simprr 734 . . . . . . . . . . . 12  |-  ( ( ( W  e.  CPreHil  /\  ( x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  /\  ( z  e.  ( Base `  W
)  /\  w  e.  ( Base `  W )
) )  ->  w  e.  ( Base `  W
) )
3028, 29ovresd 6173 . . . . . . . . . . 11  |-  ( ( ( W  e.  CPreHil  /\  ( x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  /\  ( z  e.  ( Base `  W
)  /\  w  e.  ( Base `  W )
) )  ->  (
y ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) ) w )  =  ( y ( dist `  W
) w ) )
3130breq1d 4182 . . . . . . . . . 10  |-  ( ( ( W  e.  CPreHil  /\  ( x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  /\  ( z  e.  ( Base `  W
)  /\  w  e.  ( Base `  W )
) )  ->  (
( y ( (
dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) w )  <  s  <->  ( y ( dist `  W
) w )  < 
s ) )
3227, 31anbi12d 692 . . . . . . . . 9  |-  ( ( ( W  e.  CPreHil  /\  ( x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  /\  ( z  e.  ( Base `  W
)  /\  w  e.  ( Base `  W )
) )  ->  (
( ( x ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) z )  < 
s  /\  ( y
( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) w )  < 
s )  <->  ( (
x ( dist `  W
) z )  < 
s  /\  ( y
( dist `  W )
w )  <  s
) ) )
3312ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  CPreHil  /\  ( x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  /\  ( z  e.  ( Base `  W
)  /\  w  e.  ( Base `  W )
) )  ->  .,  :
( ( Base `  W
)  X.  ( Base `  W ) ) --> CC )
3433, 24, 28fovrnd 6177 . . . . . . . . . . . 12  |-  ( ( ( W  e.  CPreHil  /\  ( x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  /\  ( z  e.  ( Base `  W
)  /\  w  e.  ( Base `  W )
) )  ->  (
x  .,  y )  e.  CC )
3533, 25, 29fovrnd 6177 . . . . . . . . . . . 12  |-  ( ( ( W  e.  CPreHil  /\  ( x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  /\  ( z  e.  ( Base `  W
)  /\  w  e.  ( Base `  W )
) )  ->  (
z  .,  w )  e.  CC )
36 eqid 2404 . . . . . . . . . . . . 13  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
3736cnmetdval 18758 . . . . . . . . . . . 12  |-  ( ( ( x  .,  y
)  e.  CC  /\  ( z  .,  w
)  e.  CC )  ->  ( ( x 
.,  y ) ( abs  o.  -  )
( z  .,  w
) )  =  ( abs `  ( ( x  .,  y )  -  ( z  .,  w ) ) ) )
3834, 35, 37syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( W  e.  CPreHil  /\  ( x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  /\  ( z  e.  ( Base `  W
)  /\  w  e.  ( Base `  W )
) )  ->  (
( x  .,  y
) ( abs  o.  -  ) ( z 
.,  w ) )  =  ( abs `  (
( x  .,  y
)  -  ( z 
.,  w ) ) ) )
392, 13, 3ipfval 16835 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( Base `  W )  /\  y  e.  ( Base `  W
) )  ->  (
x  .,  y )  =  ( x ( .i `  W ) y ) )
4024, 28, 39syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  CPreHil  /\  ( x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  /\  ( z  e.  ( Base `  W
)  /\  w  e.  ( Base `  W )
) )  ->  (
x  .,  y )  =  ( x ( .i `  W ) y ) )
412, 13, 3ipfval 16835 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( Base `  W )  /\  w  e.  ( Base `  W
) )  ->  (
z  .,  w )  =  ( z ( .i `  W ) w ) )
4241adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  CPreHil  /\  ( x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  /\  ( z  e.  ( Base `  W
)  /\  w  e.  ( Base `  W )
) )  ->  (
z  .,  w )  =  ( z ( .i `  W ) w ) )
4340, 42oveq12d 6058 . . . . . . . . . . . 12  |-  ( ( ( W  e.  CPreHil  /\  ( x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  /\  ( z  e.  ( Base `  W
)  /\  w  e.  ( Base `  W )
) )  ->  (
( x  .,  y
)  -  ( z 
.,  w ) )  =  ( ( x ( .i `  W
) y )  -  ( z ( .i
`  W ) w ) ) )
4443fveq2d 5691 . . . . . . . . . . 11  |-  ( ( ( W  e.  CPreHil  /\  ( x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  /\  ( z  e.  ( Base `  W
)  /\  w  e.  ( Base `  W )
) )  ->  ( abs `  ( ( x 
.,  y )  -  ( z  .,  w
) ) )  =  ( abs `  (
( x ( .i
`  W ) y )  -  ( z ( .i `  W
) w ) ) ) )
4538, 44eqtrd 2436 . . . . . . . . . 10  |-  ( ( ( W  e.  CPreHil  /\  ( x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  /\  ( z  e.  ( Base `  W
)  /\  w  e.  ( Base `  W )
) )  ->  (
( x  .,  y
) ( abs  o.  -  ) ( z 
.,  w ) )  =  ( abs `  (
( x ( .i
`  W ) y )  -  ( z ( .i `  W
) w ) ) ) )
4645breq1d 4182 . . . . . . . . 9  |-  ( ( ( W  e.  CPreHil  /\  ( x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  /\  ( z  e.  ( Base `  W
)  /\  w  e.  ( Base `  W )
) )  ->  (
( ( x  .,  y ) ( abs 
o.  -  ) (
z  .,  w )
)  <  r  <->  ( abs `  ( ( x ( .i `  W ) y )  -  (
z ( .i `  W ) w ) ) )  <  r
) )
4732, 46imbi12d 312 . . . . . . . 8  |-  ( ( ( W  e.  CPreHil  /\  ( x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  /\  ( z  e.  ( Base `  W
)  /\  w  e.  ( Base `  W )
) )  ->  (
( ( ( x ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) z )  < 
s  /\  ( y
( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) w )  < 
s )  ->  (
( x  .,  y
) ( abs  o.  -  ) ( z 
.,  w ) )  <  r )  <->  ( (
( x ( dist `  W ) z )  <  s  /\  (
y ( dist `  W
) w )  < 
s )  ->  ( abs `  ( ( x ( .i `  W
) y )  -  ( z ( .i
`  W ) w ) ) )  < 
r ) ) )
48472ralbidva 2706 . . . . . . 7  |-  ( ( W  e.  CPreHil  /\  (
x  e.  ( Base `  W )  /\  y  e.  ( Base `  W
) ) )  -> 
( A. z  e.  ( Base `  W
) A. w  e.  ( Base `  W
) ( ( ( x ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) ) z )  <  s  /\  ( y ( (
dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) w )  <  s
)  ->  ( (
x  .,  y )
( abs  o.  -  )
( z  .,  w
) )  <  r
)  <->  A. z  e.  (
Base `  W ) A. w  e.  ( Base `  W ) ( ( ( x (
dist `  W )
z )  <  s  /\  ( y ( dist `  W ) w )  <  s )  -> 
( abs `  (
( x ( .i
`  W ) y )  -  ( z ( .i `  W
) w ) ) )  <  r ) ) )
4948rexbidv 2687 . . . . . 6  |-  ( ( W  e.  CPreHil  /\  (
x  e.  ( Base `  W )  /\  y  e.  ( Base `  W
) ) )  -> 
( E. s  e.  RR+  A. z  e.  (
Base `  W ) A. w  e.  ( Base `  W ) ( ( ( x ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) z )  < 
s  /\  ( y
( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) w )  < 
s )  ->  (
( x  .,  y
) ( abs  o.  -  ) ( z 
.,  w ) )  <  r )  <->  E. s  e.  RR+  A. z  e.  ( Base `  W
) A. w  e.  ( Base `  W
) ( ( ( x ( dist `  W
) z )  < 
s  /\  ( y
( dist `  W )
w )  <  s
)  ->  ( abs `  ( ( x ( .i `  W ) y )  -  (
z ( .i `  W ) w ) ) )  <  r
) ) )
5049ralbidv 2686 . . . . 5  |-  ( ( W  e.  CPreHil  /\  (
x  e.  ( Base `  W )  /\  y  e.  ( Base `  W
) ) )  -> 
( A. r  e.  RR+  E. s  e.  RR+  A. z  e.  ( Base `  W ) A. w  e.  ( Base `  W
) ( ( ( x ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) ) z )  <  s  /\  ( y ( (
dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) w )  <  s
)  ->  ( (
x  .,  y )
( abs  o.  -  )
( z  .,  w
) )  <  r
)  <->  A. r  e.  RR+  E. s  e.  RR+  A. z  e.  ( Base `  W
) A. w  e.  ( Base `  W
) ( ( ( x ( dist `  W
) z )  < 
s  /\  ( y
( dist `  W )
w )  <  s
)  ->  ( abs `  ( ( x ( .i `  W ) y )  -  (
z ( .i `  W ) w ) ) )  <  r
) ) )
5123, 50mpbird 224 . . . 4  |-  ( ( W  e.  CPreHil  /\  (
x  e.  ( Base `  W )  /\  y  e.  ( Base `  W
) ) )  ->  A. r  e.  RR+  E. s  e.  RR+  A. z  e.  ( Base `  W
) A. w  e.  ( Base `  W
) ( ( ( x ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) ) z )  <  s  /\  ( y ( (
dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) w )  <  s
)  ->  ( (
x  .,  y )
( abs  o.  -  )
( z  .,  w
) )  <  r
) )
5251ralrimivva 2758 . . 3  |-  ( W  e.  CPreHil  ->  A. x  e.  (
Base `  W ) A. y  e.  ( Base `  W ) A. r  e.  RR+  E. s  e.  RR+  A. z  e.  ( Base `  W
) A. w  e.  ( Base `  W
) ( ( ( x ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) ) z )  <  s  /\  ( y ( (
dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) w )  <  s
)  ->  ( (
x  .,  y )
( abs  o.  -  )
( z  .,  w
) )  <  r
) )
53 cphngp 19089 . . . . . . 7  |-  ( W  e.  CPreHil  ->  W  e. NrmGrp )
54 ngpms 18600 . . . . . . 7  |-  ( W  e. NrmGrp  ->  W  e.  MetSp )
5553, 54syl 16 . . . . . 6  |-  ( W  e.  CPreHil  ->  W  e.  MetSp )
56 msxms 18437 . . . . . 6  |-  ( W  e.  MetSp  ->  W  e.  *
MetSp )
5755, 56syl 16 . . . . 5  |-  ( W  e.  CPreHil  ->  W  e.  * MetSp )
58 eqid 2404 . . . . . 6  |-  ( (
dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) )  =  ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) )
592, 58xmsxmet 18439 . . . . 5  |-  ( W  e.  * MetSp  ->  (
( dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) )  e.  ( * Met `  ( Base `  W
) ) )
6057, 59syl 16 . . . 4  |-  ( W  e.  CPreHil  ->  ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) )  e.  ( * Met `  ( Base `  W ) ) )
61 cnxmet 18760 . . . . 5  |-  ( abs 
o.  -  )  e.  ( * Met `  CC )
6261a1i 11 . . . 4  |-  ( W  e.  CPreHil  ->  ( abs  o.  -  )  e.  ( * Met `  CC ) )
63 eqid 2404 . . . . 5  |-  ( MetOpen `  ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) )  =  (
MetOpen `  ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) ) )
64 ipcn.k . . . . . 6  |-  K  =  ( TopOpen ` fld )
6564cnfldtopn 18769 . . . . 5  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
6663, 63, 65txmetcn 18531 . . . 4  |-  ( ( ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) )  e.  ( * Met `  ( Base `  W ) )  /\  ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) )  e.  ( * Met `  ( Base `  W ) )  /\  ( abs  o.  -  )  e.  ( * Met `  CC ) )  ->  (  .,  e.  ( ( (
MetOpen `  ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) ) ) 
tX  ( MetOpen `  (
( dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) ) )  Cn  K
)  <->  (  .,  :
( ( Base `  W
)  X.  ( Base `  W ) ) --> CC 
/\  A. x  e.  (
Base `  W ) A. y  e.  ( Base `  W ) A. r  e.  RR+  E. s  e.  RR+  A. z  e.  ( Base `  W
) A. w  e.  ( Base `  W
) ( ( ( x ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) ) z )  <  s  /\  ( y ( (
dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) w )  <  s
)  ->  ( (
x  .,  y )
( abs  o.  -  )
( z  .,  w
) )  <  r
) ) ) )
6760, 60, 62, 66syl3anc 1184 . . 3  |-  ( W  e.  CPreHil  ->  (  .,  e.  ( ( ( MetOpen `  ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) )  tX  ( MetOpen
`  ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) ) ) )  Cn  K )  <-> 
(  .,  : (
( Base `  W )  X.  ( Base `  W
) ) --> CC  /\  A. x  e.  ( Base `  W ) A. y  e.  ( Base `  W
) A. r  e.  RR+  E. s  e.  RR+  A. z  e.  ( Base `  W ) A. w  e.  ( Base `  W
) ( ( ( x ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) ) z )  <  s  /\  ( y ( (
dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) w )  <  s
)  ->  ( (
x  .,  y )
( abs  o.  -  )
( z  .,  w
) )  <  r
) ) ) )
6812, 52, 67mpbir2and 889 . 2  |-  ( W  e.  CPreHil  ->  .,  e.  (
( ( MetOpen `  (
( dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) )  tX  ( MetOpen `  ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) ) )  Cn  K ) )
69 ipcn.j . . . . . 6  |-  J  =  ( TopOpen `  W )
7069, 2, 58mstopn 18435 . . . . 5  |-  ( W  e.  MetSp  ->  J  =  ( MetOpen `  ( ( dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) ) )
7155, 70syl 16 . . . 4  |-  ( W  e.  CPreHil  ->  J  =  (
MetOpen `  ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) ) ) )
7271, 71oveq12d 6058 . . 3  |-  ( W  e.  CPreHil  ->  ( J  tX  J )  =  ( ( MetOpen `  ( ( dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) )  tX  ( MetOpen `  ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) ) ) )
7372oveq1d 6055 . 2  |-  ( W  e.  CPreHil  ->  ( ( J 
tX  J )  Cn  K )  =  ( ( ( MetOpen `  (
( dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) )  tX  ( MetOpen `  ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) ) )  Cn  K ) )
7468, 73eleqtrrd 2481 1  |-  ( W  e.  CPreHil  ->  .,  e.  (
( J  tX  J
)  Cn  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667    C_ wss 3280   class class class wbr 4172    X. cxp 4835    |` cres 4839    o. ccom 4841   -->wf 5409   ` cfv 5413  (class class class)co 6040   CCcc 8944   1c1 8947    + caddc 8949    < clt 9076    - cmin 9247    / cdiv 9633   2c2 10005   RR+crp 10568   abscabs 11994   Basecbs 13424  Scalarcsca 13487   .icip 13489   distcds 13493   TopOpenctopn 13604   * Metcxmt 16641   MetOpencmopn 16646  ℂfldccnfld 16658   PreHilcphl 16810   .i fcipf 16811    Cn ccn 17242    tX ctx 17545   *
MetSpcxme 18300   MetSpcmt 18301   normcnm 18577  NrmGrpcngp 18578  CModcclm 19040   CPreHilccph 19082
This theorem is referenced by:  cnmpt1ip  19154  cnmpt2ip  19155
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-tpos 6438  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-mhm 14693  df-submnd 14694  df-grp 14767  df-minusg 14768  df-sbg 14769  df-mulg 14770  df-subg 14896  df-ghm 14959  df-cntz 15071  df-cmn 15369  df-abl 15370  df-mgp 15604  df-rng 15618  df-cring 15619  df-ur 15620  df-oppr 15683  df-dvdsr 15701  df-unit 15702  df-invr 15732  df-dvr 15743  df-rnghom 15774  df-drng 15792  df-subrg 15821  df-staf 15888  df-srng 15889  df-lmod 15907  df-lmhm 16053  df-lvec 16130  df-sra 16199  df-rgmod 16200  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-cnfld 16659  df-phl 16812  df-ipf 16813  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cn 17245  df-cnp 17246  df-tx 17547  df-hmeo 17740  df-xms 18303  df-ms 18304  df-tms 18305  df-nm 18583  df-ngp 18584  df-tng 18585  df-nlm 18587  df-clm 19041  df-cph 19084  df-tch 19085
  Copyright terms: Public domain W3C validator