MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcj Structured version   Unicode version

Theorem ipcj 18429
Description: Conjugate of an inner product in a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f  |-  F  =  (Scalar `  W )
phllmhm.h  |-  .,  =  ( .i `  W )
phllmhm.v  |-  V  =  ( Base `  W
)
ipcj.i  |-  .*  =  ( *r `  F )
Assertion
Ref Expression
ipcj  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  B  e.  V )  ->  (  .*  `  ( A  .,  B ) )  =  ( B  .,  A
) )

Proof of Theorem ipcj
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phllmhm.v . . . . . 6  |-  V  =  ( Base `  W
)
2 phlsrng.f . . . . . 6  |-  F  =  (Scalar `  W )
3 phllmhm.h . . . . . 6  |-  .,  =  ( .i `  W )
4 eqid 2460 . . . . . 6  |-  ( 0g
`  W )  =  ( 0g `  W
)
5 ipcj.i . . . . . 6  |-  .*  =  ( *r `  F )
6 eqid 2460 . . . . . 6  |-  ( 0g
`  F )  =  ( 0g `  F
)
71, 2, 3, 4, 5, 6isphl 18423 . . . . 5  |-  ( W  e.  PreHil 
<->  ( W  e.  LVec  /\  F  e.  *Ring  /\  A. x  e.  V  (
( y  e.  V  |->  ( y  .,  x
) )  e.  ( W LMHom  (ringLMod `  F )
)  /\  ( (
x  .,  x )  =  ( 0g `  F )  ->  x  =  ( 0g `  W ) )  /\  A. y  e.  V  (  .*  `  ( x 
.,  y ) )  =  ( y  .,  x ) ) ) )
87simp3bi 1008 . . . 4  |-  ( W  e.  PreHil  ->  A. x  e.  V  ( ( y  e.  V  |->  ( y  .,  x ) )  e.  ( W LMHom  (ringLMod `  F
) )  /\  (
( x  .,  x
)  =  ( 0g
`  F )  ->  x  =  ( 0g `  W ) )  /\  A. y  e.  V  (  .*  `  ( x 
.,  y ) )  =  ( y  .,  x ) ) )
9 simp3 993 . . . . 5  |-  ( ( ( y  e.  V  |->  ( y  .,  x
) )  e.  ( W LMHom  (ringLMod `  F )
)  /\  ( (
x  .,  x )  =  ( 0g `  F )  ->  x  =  ( 0g `  W ) )  /\  A. y  e.  V  (  .*  `  ( x 
.,  y ) )  =  ( y  .,  x ) )  ->  A. y  e.  V  (  .*  `  ( x 
.,  y ) )  =  ( y  .,  x ) )
109ralimi 2850 . . . 4  |-  ( A. x  e.  V  (
( y  e.  V  |->  ( y  .,  x
) )  e.  ( W LMHom  (ringLMod `  F )
)  /\  ( (
x  .,  x )  =  ( 0g `  F )  ->  x  =  ( 0g `  W ) )  /\  A. y  e.  V  (  .*  `  ( x 
.,  y ) )  =  ( y  .,  x ) )  ->  A. x  e.  V  A. y  e.  V  (  .*  `  ( x 
.,  y ) )  =  ( y  .,  x ) )
118, 10syl 16 . . 3  |-  ( W  e.  PreHil  ->  A. x  e.  V  A. y  e.  V  (  .*  `  ( x 
.,  y ) )  =  ( y  .,  x ) )
12 oveq1 6282 . . . . . 6  |-  ( x  =  A  ->  (
x  .,  y )  =  ( A  .,  y ) )
1312fveq2d 5861 . . . . 5  |-  ( x  =  A  ->  (  .*  `  ( x  .,  y ) )  =  (  .*  `  ( A  .,  y ) ) )
14 oveq2 6283 . . . . 5  |-  ( x  =  A  ->  (
y  .,  x )  =  ( y  .,  A ) )
1513, 14eqeq12d 2482 . . . 4  |-  ( x  =  A  ->  (
(  .*  `  (
x  .,  y )
)  =  ( y 
.,  x )  <->  (  .*  `  ( A  .,  y
) )  =  ( y  .,  A ) ) )
16 oveq2 6283 . . . . . 6  |-  ( y  =  B  ->  ( A  .,  y )  =  ( A  .,  B
) )
1716fveq2d 5861 . . . . 5  |-  ( y  =  B  ->  (  .*  `  ( A  .,  y ) )  =  (  .*  `  ( A  .,  B ) ) )
18 oveq1 6282 . . . . 5  |-  ( y  =  B  ->  (
y  .,  A )  =  ( B  .,  A ) )
1917, 18eqeq12d 2482 . . . 4  |-  ( y  =  B  ->  (
(  .*  `  ( A  .,  y ) )  =  ( y  .,  A )  <->  (  .*  `  ( A  .,  B
) )  =  ( B  .,  A ) ) )
2015, 19rspc2v 3216 . . 3  |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( A. x  e.  V  A. y  e.  V  (  .*  `  ( x  .,  y ) )  =  ( y 
.,  x )  -> 
(  .*  `  ( A  .,  B ) )  =  ( B  .,  A ) ) )
2111, 20syl5com 30 . 2  |-  ( W  e.  PreHil  ->  ( ( A  e.  V  /\  B  e.  V )  ->  (  .*  `  ( A  .,  B ) )  =  ( B  .,  A
) ) )
22213impib 1189 1  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  B  e.  V )  ->  (  .*  `  ( A  .,  B ) )  =  ( B  .,  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   A.wral 2807    |-> cmpt 4498   ` cfv 5579  (class class class)co 6275   Basecbs 14479   *rcstv 14546  Scalarcsca 14547   .icip 14549   0gc0g 14684   *Ringcsr 17269   LMHom clmhm 17441   LVecclvec 17524  ringLModcrglmod 17591   PreHilcphl 18419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-nul 4569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-sbc 3325  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-br 4441  df-opab 4499  df-mpt 4500  df-iota 5542  df-fv 5587  df-ov 6278  df-phl 18421
This theorem is referenced by:  iporthcom  18430  ip0r  18432  ipdi  18435  ipassr  18441  cphipcj  21374  tchcphlem3  21404  ipcau2  21405  tchcphlem1  21406
  Copyright terms: Public domain W3C validator