MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem1 Structured version   Visualization version   Unicode version

Theorem ipasslem1 26465
Description: Lemma for ipassi 26475. Show the inner product associative law for nonnegative integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1  |-  X  =  ( BaseSet `  U )
ip1i.2  |-  G  =  ( +v `  U
)
ip1i.4  |-  S  =  ( .sOLD `  U )
ip1i.7  |-  P  =  ( .iOLD `  U )
ip1i.9  |-  U  e.  CPreHil
OLD
ipasslem1.b  |-  B  e.  X
Assertion
Ref Expression
ipasslem1  |-  ( ( N  e.  NN0  /\  A  e.  X )  ->  ( ( N S A ) P B )  =  ( N  x.  ( A P B ) ) )

Proof of Theorem ipasslem1
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0cn 10876 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  k  e.  CC )
2 ax-1cn 9594 . . . . . . . . . . . 12  |-  1  e.  CC
3 ip1i.9 . . . . . . . . . . . . . 14  |-  U  e.  CPreHil
OLD
43phnvi 26450 . . . . . . . . . . . . 13  |-  U  e.  NrmCVec
5 ip1i.1 . . . . . . . . . . . . . 14  |-  X  =  ( BaseSet `  U )
6 ip1i.2 . . . . . . . . . . . . . 14  |-  G  =  ( +v `  U
)
7 ip1i.4 . . . . . . . . . . . . . 14  |-  S  =  ( .sOLD `  U )
85, 6, 7nvdir 26245 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  (
k  e.  CC  /\  1  e.  CC  /\  A  e.  X ) )  -> 
( ( k  +  1 ) S A )  =  ( ( k S A ) G ( 1 S A ) ) )
94, 8mpan 675 . . . . . . . . . . . 12  |-  ( ( k  e.  CC  /\  1  e.  CC  /\  A  e.  X )  ->  (
( k  +  1 ) S A )  =  ( ( k S A ) G ( 1 S A ) ) )
102, 9mp3an2 1351 . . . . . . . . . . 11  |-  ( ( k  e.  CC  /\  A  e.  X )  ->  ( ( k  +  1 ) S A )  =  ( ( k S A ) G ( 1 S A ) ) )
111, 10sylan 474 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  A  e.  X )  ->  ( ( k  +  1 ) S A )  =  ( ( k S A ) G ( 1 S A ) ) )
125, 7nvsid 26241 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
1 S A )  =  A )
134, 12mpan 675 . . . . . . . . . . . 12  |-  ( A  e.  X  ->  (
1 S A )  =  A )
1413adantl 468 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  A  e.  X )  ->  ( 1 S A )  =  A )
1514oveq2d 6304 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  A  e.  X )  ->  ( ( k S A ) G ( 1 S A ) )  =  ( ( k S A ) G A ) )
1611, 15eqtrd 2484 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  A  e.  X )  ->  ( ( k  +  1 ) S A )  =  ( ( k S A ) G A ) )
1716oveq1d 6303 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  A  e.  X )  ->  ( ( ( k  +  1 ) S A ) P B )  =  ( ( ( k S A ) G A ) P B ) )
18 ipasslem1.b . . . . . . . . . . . . 13  |-  B  e.  X
19 ip1i.7 . . . . . . . . . . . . . 14  |-  P  =  ( .iOLD `  U )
205, 19dipcl 26344 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A P B )  e.  CC )
214, 18, 20mp3an13 1354 . . . . . . . . . . . 12  |-  ( A  e.  X  ->  ( A P B )  e.  CC )
2221mulid2d 9658 . . . . . . . . . . 11  |-  ( A  e.  X  ->  (
1  x.  ( A P B ) )  =  ( A P B ) )
2322adantl 468 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  A  e.  X )  ->  ( 1  x.  ( A P B ) )  =  ( A P B ) )
2423oveq2d 6304 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  A  e.  X )  ->  ( ( ( k S A ) P B )  +  ( 1  x.  ( A P B ) ) )  =  ( ( ( k S A ) P B )  +  ( A P B ) ) )
255, 7nvscl 26240 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  k  e.  CC  /\  A  e.  X )  ->  (
k S A )  e.  X )
264, 25mp3an1 1350 . . . . . . . . . . 11  |-  ( ( k  e.  CC  /\  A  e.  X )  ->  ( k S A )  e.  X )
271, 26sylan 474 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  A  e.  X )  ->  ( k S A )  e.  X )
285, 6, 7, 19, 3ipdiri 26464 . . . . . . . . . . 11  |-  ( ( ( k S A )  e.  X  /\  A  e.  X  /\  B  e.  X )  ->  ( ( ( k S A ) G A ) P B )  =  ( ( ( k S A ) P B )  +  ( A P B ) ) )
2918, 28mp3an3 1352 . . . . . . . . . 10  |-  ( ( ( k S A )  e.  X  /\  A  e.  X )  ->  ( ( ( k S A ) G A ) P B )  =  ( ( ( k S A ) P B )  +  ( A P B ) ) )
3027, 29sylancom 672 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  A  e.  X )  ->  ( ( ( k S A ) G A ) P B )  =  ( ( ( k S A ) P B )  +  ( A P B ) ) )
3124, 30eqtr4d 2487 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  A  e.  X )  ->  ( ( ( k S A ) P B )  +  ( 1  x.  ( A P B ) ) )  =  ( ( ( k S A ) G A ) P B ) )
3217, 31eqtr4d 2487 . . . . . . 7  |-  ( ( k  e.  NN0  /\  A  e.  X )  ->  ( ( ( k  +  1 ) S A ) P B )  =  ( ( ( k S A ) P B )  +  ( 1  x.  ( A P B ) ) ) )
33 oveq1 6295 . . . . . . 7  |-  ( ( ( k S A ) P B )  =  ( k  x.  ( A P B ) )  ->  (
( ( k S A ) P B )  +  ( 1  x.  ( A P B ) ) )  =  ( ( k  x.  ( A P B ) )  +  ( 1  x.  ( A P B ) ) ) )
3432, 33sylan9eq 2504 . . . . . 6  |-  ( ( ( k  e.  NN0  /\  A  e.  X )  /\  ( ( k S A ) P B )  =  ( k  x.  ( A P B ) ) )  ->  ( (
( k  +  1 ) S A ) P B )  =  ( ( k  x.  ( A P B ) )  +  ( 1  x.  ( A P B ) ) ) )
35 adddir 9631 . . . . . . . . 9  |-  ( ( k  e.  CC  /\  1  e.  CC  /\  ( A P B )  e.  CC )  ->  (
( k  +  1 )  x.  ( A P B ) )  =  ( ( k  x.  ( A P B ) )  +  ( 1  x.  ( A P B ) ) ) )
362, 35mp3an2 1351 . . . . . . . 8  |-  ( ( k  e.  CC  /\  ( A P B )  e.  CC )  -> 
( ( k  +  1 )  x.  ( A P B ) )  =  ( ( k  x.  ( A P B ) )  +  ( 1  x.  ( A P B ) ) ) )
371, 21, 36syl2an 480 . . . . . . 7  |-  ( ( k  e.  NN0  /\  A  e.  X )  ->  ( ( k  +  1 )  x.  ( A P B ) )  =  ( ( k  x.  ( A P B ) )  +  ( 1  x.  ( A P B ) ) ) )
3837adantr 467 . . . . . 6  |-  ( ( ( k  e.  NN0  /\  A  e.  X )  /\  ( ( k S A ) P B )  =  ( k  x.  ( A P B ) ) )  ->  ( (
k  +  1 )  x.  ( A P B ) )  =  ( ( k  x.  ( A P B ) )  +  ( 1  x.  ( A P B ) ) ) )
3934, 38eqtr4d 2487 . . . . 5  |-  ( ( ( k  e.  NN0  /\  A  e.  X )  /\  ( ( k S A ) P B )  =  ( k  x.  ( A P B ) ) )  ->  ( (
( k  +  1 ) S A ) P B )  =  ( ( k  +  1 )  x.  ( A P B ) ) )
4039exp31 608 . . . 4  |-  ( k  e.  NN0  ->  ( A  e.  X  ->  (
( ( k S A ) P B )  =  ( k  x.  ( A P B ) )  -> 
( ( ( k  +  1 ) S A ) P B )  =  ( ( k  +  1 )  x.  ( A P B ) ) ) ) )
4140a2d 29 . . 3  |-  ( k  e.  NN0  ->  ( ( A  e.  X  -> 
( ( k S A ) P B )  =  ( k  x.  ( A P B ) ) )  ->  ( A  e.  X  ->  ( (
( k  +  1 ) S A ) P B )  =  ( ( k  +  1 )  x.  ( A P B ) ) ) ) )
42 eqid 2450 . . . . . 6  |-  ( 0vec `  U )  =  (
0vec `  U )
435, 42, 19dip0l 26350 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  (
( 0vec `  U ) P B )  =  0 )
444, 18, 43mp2an 677 . . . 4  |-  ( (
0vec `  U ) P B )  =  0
455, 7, 42nv0 26251 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
0 S A )  =  ( 0vec `  U
) )
464, 45mpan 675 . . . . 5  |-  ( A  e.  X  ->  (
0 S A )  =  ( 0vec `  U
) )
4746oveq1d 6303 . . . 4  |-  ( A  e.  X  ->  (
( 0 S A ) P B )  =  ( ( 0vec `  U ) P B ) )
4821mul02d 9828 . . . 4  |-  ( A  e.  X  ->  (
0  x.  ( A P B ) )  =  0 )
4944, 47, 483eqtr4a 2510 . . 3  |-  ( A  e.  X  ->  (
( 0 S A ) P B )  =  ( 0  x.  ( A P B ) ) )
50 oveq1 6295 . . . . . 6  |-  ( j  =  0  ->  (
j S A )  =  ( 0 S A ) )
5150oveq1d 6303 . . . . 5  |-  ( j  =  0  ->  (
( j S A ) P B )  =  ( ( 0 S A ) P B ) )
52 oveq1 6295 . . . . 5  |-  ( j  =  0  ->  (
j  x.  ( A P B ) )  =  ( 0  x.  ( A P B ) ) )
5351, 52eqeq12d 2465 . . . 4  |-  ( j  =  0  ->  (
( ( j S A ) P B )  =  ( j  x.  ( A P B ) )  <->  ( (
0 S A ) P B )  =  ( 0  x.  ( A P B ) ) ) )
5453imbi2d 318 . . 3  |-  ( j  =  0  ->  (
( A  e.  X  ->  ( ( j S A ) P B )  =  ( j  x.  ( A P B ) ) )  <-> 
( A  e.  X  ->  ( ( 0 S A ) P B )  =  ( 0  x.  ( A P B ) ) ) ) )
55 oveq1 6295 . . . . . 6  |-  ( j  =  k  ->  (
j S A )  =  ( k S A ) )
5655oveq1d 6303 . . . . 5  |-  ( j  =  k  ->  (
( j S A ) P B )  =  ( ( k S A ) P B ) )
57 oveq1 6295 . . . . 5  |-  ( j  =  k  ->  (
j  x.  ( A P B ) )  =  ( k  x.  ( A P B ) ) )
5856, 57eqeq12d 2465 . . . 4  |-  ( j  =  k  ->  (
( ( j S A ) P B )  =  ( j  x.  ( A P B ) )  <->  ( (
k S A ) P B )  =  ( k  x.  ( A P B ) ) ) )
5958imbi2d 318 . . 3  |-  ( j  =  k  ->  (
( A  e.  X  ->  ( ( j S A ) P B )  =  ( j  x.  ( A P B ) ) )  <-> 
( A  e.  X  ->  ( ( k S A ) P B )  =  ( k  x.  ( A P B ) ) ) ) )
60 oveq1 6295 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
j S A )  =  ( ( k  +  1 ) S A ) )
6160oveq1d 6303 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( j S A ) P B )  =  ( ( ( k  +  1 ) S A ) P B ) )
62 oveq1 6295 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
j  x.  ( A P B ) )  =  ( ( k  +  1 )  x.  ( A P B ) ) )
6361, 62eqeq12d 2465 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( ( j S A ) P B )  =  ( j  x.  ( A P B ) )  <->  ( (
( k  +  1 ) S A ) P B )  =  ( ( k  +  1 )  x.  ( A P B ) ) ) )
6463imbi2d 318 . . 3  |-  ( j  =  ( k  +  1 )  ->  (
( A  e.  X  ->  ( ( j S A ) P B )  =  ( j  x.  ( A P B ) ) )  <-> 
( A  e.  X  ->  ( ( ( k  +  1 ) S A ) P B )  =  ( ( k  +  1 )  x.  ( A P B ) ) ) ) )
65 oveq1 6295 . . . . . 6  |-  ( j  =  N  ->  (
j S A )  =  ( N S A ) )
6665oveq1d 6303 . . . . 5  |-  ( j  =  N  ->  (
( j S A ) P B )  =  ( ( N S A ) P B ) )
67 oveq1 6295 . . . . 5  |-  ( j  =  N  ->  (
j  x.  ( A P B ) )  =  ( N  x.  ( A P B ) ) )
6866, 67eqeq12d 2465 . . . 4  |-  ( j  =  N  ->  (
( ( j S A ) P B )  =  ( j  x.  ( A P B ) )  <->  ( ( N S A ) P B )  =  ( N  x.  ( A P B ) ) ) )
6968imbi2d 318 . . 3  |-  ( j  =  N  ->  (
( A  e.  X  ->  ( ( j S A ) P B )  =  ( j  x.  ( A P B ) ) )  <-> 
( A  e.  X  ->  ( ( N S A ) P B )  =  ( N  x.  ( A P B ) ) ) ) )
7041, 49, 54, 59, 64, 69nn0indALT 11028 . 2  |-  ( N  e.  NN0  ->  ( A  e.  X  ->  (
( N S A ) P B )  =  ( N  x.  ( A P B ) ) ) )
7170imp 431 1  |-  ( ( N  e.  NN0  /\  A  e.  X )  ->  ( ( N S A ) P B )  =  ( N  x.  ( A P B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 984    = wceq 1443    e. wcel 1886   ` cfv 5581  (class class class)co 6288   CCcc 9534   0cc0 9536   1c1 9537    + caddc 9539    x. cmul 9541   NN0cn0 10866   NrmCVeccnv 26196   +vcpv 26197   BaseSetcba 26198   .sOLDcns 26199   0veccn0v 26200   .iOLDcdip 26329   CPreHil OLDccphlo 26446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-inf2 8143  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613  ax-pre-sup 9614
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-fal 1449  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-se 4793  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-isom 5590  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-om 6690  df-1st 6790  df-2nd 6791  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-1o 7179  df-oadd 7183  df-er 7360  df-en 7567  df-dom 7568  df-sdom 7569  df-fin 7570  df-sup 7953  df-oi 8022  df-card 8370  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-div 10267  df-nn 10607  df-2 10665  df-3 10666  df-4 10667  df-n0 10867  df-z 10935  df-uz 11157  df-rp 11300  df-fz 11782  df-fzo 11913  df-seq 12211  df-exp 12270  df-hash 12513  df-cj 13155  df-re 13156  df-im 13157  df-sqrt 13291  df-abs 13292  df-clim 13545  df-sum 13746  df-grpo 25912  df-gid 25913  df-ginv 25914  df-ablo 26003  df-vc 26158  df-nv 26204  df-va 26207  df-ba 26208  df-sm 26209  df-0v 26210  df-nmcv 26212  df-dip 26330  df-ph 26447
This theorem is referenced by:  ipasslem2  26466  ipasslem3  26467  ipasslem4  26468
  Copyright terms: Public domain W3C validator