MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipass Structured version   Unicode version

Theorem ipass 18073
Description: Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f  |-  F  =  (Scalar `  W )
phllmhm.h  |-  .,  =  ( .i `  W )
phllmhm.v  |-  V  =  ( Base `  W
)
ipdir.f  |-  K  =  ( Base `  F
)
ipass.s  |-  .x.  =  ( .s `  W )
ipass.p  |-  .X.  =  ( .r `  F )
Assertion
Ref Expression
ipass  |-  ( ( W  e.  PreHil  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  .x.  B )  .,  C )  =  ( A  .X.  ( B  .,  C ) ) )

Proof of Theorem ipass
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 phlsrng.f . . . . 5  |-  F  =  (Scalar `  W )
2 phllmhm.h . . . . 5  |-  .,  =  ( .i `  W )
3 phllmhm.v . . . . 5  |-  V  =  ( Base `  W
)
4 eqid 2442 . . . . 5  |-  ( x  e.  V  |->  ( x 
.,  C ) )  =  ( x  e.  V  |->  ( x  .,  C ) )
51, 2, 3, 4phllmhm 18060 . . . 4  |-  ( ( W  e.  PreHil  /\  C  e.  V )  ->  (
x  e.  V  |->  ( x  .,  C ) )  e.  ( W LMHom 
(ringLMod `  F ) ) )
653ad2antr3 1155 . . 3  |-  ( ( W  e.  PreHil  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V )
)  ->  ( x  e.  V  |->  ( x 
.,  C ) )  e.  ( W LMHom  (ringLMod `  F ) ) )
7 simpr1 994 . . 3  |-  ( ( W  e.  PreHil  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V )
)  ->  A  e.  K )
8 simpr2 995 . . 3  |-  ( ( W  e.  PreHil  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V )
)  ->  B  e.  V )
9 ipdir.f . . . 4  |-  K  =  ( Base `  F
)
10 ipass.s . . . 4  |-  .x.  =  ( .s `  W )
11 ipass.p . . . . 5  |-  .X.  =  ( .r `  F )
12 rlmvsca 17282 . . . . 5  |-  ( .r
`  F )  =  ( .s `  (ringLMod `  F ) )
1311, 12eqtri 2462 . . . 4  |-  .X.  =  ( .s `  (ringLMod `  F
) )
141, 9, 3, 10, 13lmhmlin 17115 . . 3  |-  ( ( ( x  e.  V  |->  ( x  .,  C
) )  e.  ( W LMHom  (ringLMod `  F )
)  /\  A  e.  K  /\  B  e.  V
)  ->  ( (
x  e.  V  |->  ( x  .,  C ) ) `  ( A 
.x.  B ) )  =  ( A  .X.  ( ( x  e.  V  |->  ( x  .,  C ) ) `  B ) ) )
156, 7, 8, 14syl3anc 1218 . 2  |-  ( ( W  e.  PreHil  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V )
)  ->  ( (
x  e.  V  |->  ( x  .,  C ) ) `  ( A 
.x.  B ) )  =  ( A  .X.  ( ( x  e.  V  |->  ( x  .,  C ) ) `  B ) ) )
16 phllmod 18058 . . . . 5  |-  ( W  e.  PreHil  ->  W  e.  LMod )
1716adantr 465 . . . 4  |-  ( ( W  e.  PreHil  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V )
)  ->  W  e.  LMod )
183, 1, 10, 9lmodvscl 16964 . . . 4  |-  ( ( W  e.  LMod  /\  A  e.  K  /\  B  e.  V )  ->  ( A  .x.  B )  e.  V )
1917, 7, 8, 18syl3anc 1218 . . 3  |-  ( ( W  e.  PreHil  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V )
)  ->  ( A  .x.  B )  e.  V
)
20 oveq1 6097 . . . 4  |-  ( x  =  ( A  .x.  B )  ->  (
x  .,  C )  =  ( ( A 
.x.  B )  .,  C ) )
21 ovex 6115 . . . 4  |-  ( x 
.,  C )  e. 
_V
2220, 4, 21fvmpt3i 5777 . . 3  |-  ( ( A  .x.  B )  e.  V  ->  (
( x  e.  V  |->  ( x  .,  C
) ) `  ( A  .x.  B ) )  =  ( ( A 
.x.  B )  .,  C ) )
2319, 22syl 16 . 2  |-  ( ( W  e.  PreHil  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V )
)  ->  ( (
x  e.  V  |->  ( x  .,  C ) ) `  ( A 
.x.  B ) )  =  ( ( A 
.x.  B )  .,  C ) )
24 oveq1 6097 . . . . 5  |-  ( x  =  B  ->  (
x  .,  C )  =  ( B  .,  C ) )
2524, 4, 21fvmpt3i 5777 . . . 4  |-  ( B  e.  V  ->  (
( x  e.  V  |->  ( x  .,  C
) ) `  B
)  =  ( B 
.,  C ) )
268, 25syl 16 . . 3  |-  ( ( W  e.  PreHil  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V )
)  ->  ( (
x  e.  V  |->  ( x  .,  C ) ) `  B )  =  ( B  .,  C ) )
2726oveq2d 6106 . 2  |-  ( ( W  e.  PreHil  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V )
)  ->  ( A  .X.  ( ( x  e.  V  |->  ( x  .,  C ) ) `  B ) )  =  ( A  .X.  ( B  .,  C ) ) )
2815, 23, 273eqtr3d 2482 1  |-  ( ( W  e.  PreHil  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  .x.  B )  .,  C )  =  ( A  .X.  ( B  .,  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    e. cmpt 4349   ` cfv 5417  (class class class)co 6090   Basecbs 14173   .rcmulr 14238  Scalarcsca 14240   .scvsca 14241   .icip 14242   LModclmod 16947   LMHom clmhm 17099  ringLModcrglmod 17249   PreHilcphl 18052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-recs 6831  df-rdg 6865  df-er 7100  df-en 7310  df-dom 7311  df-sdom 7312  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-nn 10322  df-2 10379  df-3 10380  df-4 10381  df-5 10382  df-6 10383  df-7 10384  df-8 10385  df-ndx 14176  df-slot 14177  df-sets 14179  df-vsca 14254  df-ip 14255  df-lmod 16949  df-lmhm 17102  df-lvec 17183  df-sra 17252  df-rgmod 17253  df-phl 18054
This theorem is referenced by:  ipassr  18074  ocvlss  18096  cphass  20728  ipcau2  20748  tchcphlem2  20750
  Copyright terms: Public domain W3C validator