MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2i Structured version   Unicode version

Theorem ip2i 24375
Description: Equation 6.48 of [Ponnusamy] p. 362. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1  |-  X  =  ( BaseSet `  U )
ip1i.2  |-  G  =  ( +v `  U
)
ip1i.4  |-  S  =  ( .sOLD `  U )
ip1i.7  |-  P  =  ( .iOLD `  U )
ip1i.9  |-  U  e.  CPreHil
OLD
ip2i.8  |-  A  e.  X
ip2i.9  |-  B  e.  X
Assertion
Ref Expression
ip2i  |-  ( ( 2 S A ) P B )  =  ( 2  x.  ( A P B ) )

Proof of Theorem ip2i
StepHypRef Expression
1 ip1i.9 . . . . . 6  |-  U  e.  CPreHil
OLD
21phnvi 24363 . . . . 5  |-  U  e.  NrmCVec
3 ip2i.8 . . . . . 6  |-  A  e.  X
4 ip1i.1 . . . . . . 7  |-  X  =  ( BaseSet `  U )
5 ip1i.2 . . . . . . 7  |-  G  =  ( +v `  U
)
64, 5nvgcl 24145 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  A  e.  X )  ->  ( A G A )  e.  X )
72, 3, 3, 6mp3an 1315 . . . . 5  |-  ( A G A )  e.  X
8 ip2i.9 . . . . 5  |-  B  e.  X
9 ip1i.7 . . . . . 6  |-  P  =  ( .iOLD `  U )
104, 9dipcl 24257 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( A G A )  e.  X  /\  B  e.  X )  ->  (
( A G A ) P B )  e.  CC )
112, 7, 8, 10mp3an 1315 . . . 4  |-  ( ( A G A ) P B )  e.  CC
1211addid1i 9662 . . 3  |-  ( ( ( A G A ) P B )  +  0 )  =  ( ( A G A ) P B )
13 ip1i.4 . . . . . . . 8  |-  S  =  ( .sOLD `  U )
14 eqid 2452 . . . . . . . 8  |-  ( 0vec `  U )  =  (
0vec `  U )
154, 5, 13, 14nvrinv 24180 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A G ( -u 1 S A ) )  =  ( 0vec `  U
) )
162, 3, 15mp2an 672 . . . . . 6  |-  ( A G ( -u 1 S A ) )  =  ( 0vec `  U
)
1716oveq1i 6205 . . . . 5  |-  ( ( A G ( -u
1 S A ) ) P B )  =  ( ( 0vec `  U ) P B )
184, 14, 9dip0l 24263 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  (
( 0vec `  U ) P B )  =  0 )
192, 8, 18mp2an 672 . . . . 5  |-  ( (
0vec `  U ) P B )  =  0
2017, 19eqtri 2481 . . . 4  |-  ( ( A G ( -u
1 S A ) ) P B )  =  0
2120oveq2i 6206 . . 3  |-  ( ( ( A G A ) P B )  +  ( ( A G ( -u 1 S A ) ) P B ) )  =  ( ( ( A G A ) P B )  +  0 )
22 df-2 10486 . . . . . 6  |-  2  =  ( 1  +  1 )
2322oveq1i 6205 . . . . 5  |-  ( 2 S A )  =  ( ( 1  +  1 ) S A )
24 ax-1cn 9446 . . . . . . . 8  |-  1  e.  CC
2524, 24, 33pm3.2i 1166 . . . . . . 7  |-  ( 1  e.  CC  /\  1  e.  CC  /\  A  e.  X )
264, 5, 13nvdir 24158 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  (
1  e.  CC  /\  1  e.  CC  /\  A  e.  X ) )  -> 
( ( 1  +  1 ) S A )  =  ( ( 1 S A ) G ( 1 S A ) ) )
272, 25, 26mp2an 672 . . . . . 6  |-  ( ( 1  +  1 ) S A )  =  ( ( 1 S A ) G ( 1 S A ) )
284, 13nvsid 24154 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
1 S A )  =  A )
292, 3, 28mp2an 672 . . . . . . 7  |-  ( 1 S A )  =  A
3029, 29oveq12i 6207 . . . . . 6  |-  ( ( 1 S A ) G ( 1 S A ) )  =  ( A G A )
3127, 30eqtri 2481 . . . . 5  |-  ( ( 1  +  1 ) S A )  =  ( A G A )
3223, 31eqtri 2481 . . . 4  |-  ( 2 S A )  =  ( A G A )
3332oveq1i 6205 . . 3  |-  ( ( 2 S A ) P B )  =  ( ( A G A ) P B )
3412, 21, 333eqtr4ri 2492 . 2  |-  ( ( 2 S A ) P B )  =  ( ( ( A G A ) P B )  +  ( ( A G (
-u 1 S A ) ) P B ) )
354, 5, 13, 9, 1, 3, 3, 8ip1i 24374 . 2  |-  ( ( ( A G A ) P B )  +  ( ( A G ( -u 1 S A ) ) P B ) )  =  ( 2  x.  ( A P B ) )
3634, 35eqtri 2481 1  |-  ( ( 2 S A ) P B )  =  ( 2  x.  ( A P B ) )
Colors of variables: wff setvar class
Syntax hints:    /\ w3a 965    = wceq 1370    e. wcel 1758   ` cfv 5521  (class class class)co 6195   CCcc 9386   0cc0 9388   1c1 9389    + caddc 9391    x. cmul 9393   -ucneg 9702   2c2 10477   NrmCVeccnv 24109   +vcpv 24110   BaseSetcba 24111   .sOLDcns 24112   0veccn0v 24113   .iOLDcdip 24242   CPreHil OLDccphlo 24359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477  ax-inf2 7953  ax-cnex 9444  ax-resscn 9445  ax-1cn 9446  ax-icn 9447  ax-addcl 9448  ax-addrcl 9449  ax-mulcl 9450  ax-mulrcl 9451  ax-mulcom 9452  ax-addass 9453  ax-mulass 9454  ax-distr 9455  ax-i2m1 9456  ax-1ne0 9457  ax-1rid 9458  ax-rnegex 9459  ax-rrecex 9460  ax-cnre 9461  ax-pre-lttri 9462  ax-pre-lttrn 9463  ax-pre-ltadd 9464  ax-pre-mulgt0 9465  ax-pre-sup 9466
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-nel 2648  df-ral 2801  df-rex 2802  df-reu 2803  df-rmo 2804  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-pss 3447  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4195  df-int 4232  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4489  df-eprel 4735  df-id 4739  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-ord 4825  df-on 4826  df-lim 4827  df-suc 4828  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-isom 5530  df-riota 6156  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-om 6582  df-1st 6682  df-2nd 6683  df-recs 6937  df-rdg 6971  df-1o 7025  df-oadd 7029  df-er 7206  df-en 7416  df-dom 7417  df-sdom 7418  df-fin 7419  df-sup 7797  df-oi 7830  df-card 8215  df-pnf 9526  df-mnf 9527  df-xr 9528  df-ltxr 9529  df-le 9530  df-sub 9703  df-neg 9704  df-div 10100  df-nn 10429  df-2 10486  df-3 10487  df-4 10488  df-n0 10686  df-z 10753  df-uz 10968  df-rp 11098  df-fz 11550  df-fzo 11661  df-seq 11919  df-exp 11978  df-hash 12216  df-cj 12701  df-re 12702  df-im 12703  df-sqr 12837  df-abs 12838  df-clim 13079  df-sum 13277  df-grpo 23825  df-gid 23826  df-ginv 23827  df-ablo 23916  df-vc 24071  df-nv 24117  df-va 24120  df-ba 24121  df-sm 24122  df-0v 24123  df-nmcv 24125  df-dip 24243  df-ph 24360
This theorem is referenced by:  ipdirilem  24376
  Copyright terms: Public domain W3C validator