Mathbox for Andrew Salmon < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotavalsb Structured version   Visualization version   Unicode version

Theorem iotavalsb 36854
 Description: Theorem *14.242 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotavalsb
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)   (,,)

Proof of Theorem iotavalsb
StepHypRef Expression
1 19.8a 1955 . 2
2 df-eu 2323 . . 3
3 iotavalb 36851 . . . 4
4 dfsbcq 3257 . . . . 5
54eqcoms 2479 . . . 4
63, 5syl6bi 236 . . 3
72, 6sylbir 218 . 2
81, 7mpcom 36 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 189  wal 1450   wceq 1452  wex 1671  weu 2319  wsbc 3255  cio 5551 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451 This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-rex 2762  df-v 3033  df-sbc 3256  df-un 3395  df-sn 3960  df-pr 3962  df-uni 4191  df-iota 5553 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator