Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotavalsb Unicode version

Theorem iotavalsb 26800
Description: Theorem *14.242 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotavalsb  |-  ( A. x ( ph  <->  x  =  y )  ->  ( [. y  /  z ]. ps  <->  [. ( iota x ph )  /  z ]. ps ) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hints:    ph( x, z)    ps( x, y, z)

Proof of Theorem iotavalsb
StepHypRef Expression
1 19.8a 1758 . 2  |-  ( A. x ( ph  <->  x  =  y )  ->  E. y A. x ( ph  <->  x  =  y ) )
2 df-eu 2118 . . 3  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
3 iotavalb 26797 . . . 4  |-  ( E! x ph  ->  ( A. x ( ph  <->  x  =  y )  <->  ( iota x ph )  =  y ) )
4 dfsbcq 2923 . . . . 5  |-  ( y  =  ( iota x ph )  ->  ( [. y  /  z ]. ps  <->  [. ( iota x ph )  /  z ]. ps ) )
54eqcoms 2256 . . . 4  |-  ( ( iota x ph )  =  y  ->  ( [. y  /  z ]. ps  <->  [. ( iota x ph )  /  z ]. ps ) )
63, 5syl6bi 221 . . 3  |-  ( E! x ph  ->  ( A. x ( ph  <->  x  =  y )  ->  ( [. y  /  z ]. ps  <->  [. ( iota x ph )  /  z ]. ps ) ) )
72, 6sylbir 206 . 2  |-  ( E. y A. x (
ph 
<->  x  =  y )  ->  ( A. x
( ph  <->  x  =  y
)  ->  ( [. y  /  z ]. ps  <->  [. ( iota x ph )  /  z ]. ps ) ) )
81, 7mpcom 34 1  |-  ( A. x ( ph  <->  x  =  y )  ->  ( [. y  /  z ]. ps  <->  [. ( iota x ph )  /  z ]. ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178   A.wal 1532   E.wex 1537    = wceq 1619   E!weu 2114   [.wsbc 2921   iotacio 6141
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-rex 2514  df-v 2729  df-sbc 2922  df-un 3083  df-sn 3550  df-pr 3551  df-uni 3728  df-iota 6143
  Copyright terms: Public domain W3C validator