Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotavalb Structured version   Visualization version   Unicode version

Theorem iotavalb 36826
Description: Theorem *14.202 in [WhiteheadRussell] p. 189. A biconditional version of iotaval 5580. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotavalb  |-  ( E! x ph  ->  ( A. x ( ph  <->  x  =  y )  <->  ( iota x ph )  =  y ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem iotavalb
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 iotaval 5580 . 2  |-  ( A. x ( ph  <->  x  =  y )  ->  ( iota x ph )  =  y )
2 iotasbc 36815 . . . 4  |-  ( E! x ph  ->  ( [. ( iota x ph )  /  z ]. z  =  y  <->  E. z ( A. x ( ph  <->  x  =  z )  /\  z  =  y ) ) )
3 iotaexeu 36814 . . . . 5  |-  ( E! x ph  ->  ( iota x ph )  e. 
_V )
4 eqsbc3 3319 . . . . 5  |-  ( ( iota x ph )  e.  _V  ->  ( [. ( iota x ph )  /  z ]. z  =  y  <->  ( iota x ph )  =  y
) )
53, 4syl 17 . . . 4  |-  ( E! x ph  ->  ( [. ( iota x ph )  /  z ]. z  =  y  <->  ( iota x ph )  =  y
) )
62, 5bitr3d 263 . . 3  |-  ( E! x ph  ->  ( E. z ( A. x
( ph  <->  x  =  z
)  /\  z  =  y )  <->  ( iota x ph )  =  y ) )
7 equequ2 1879 . . . . . . 7  |-  ( z  =  y  ->  (
x  =  z  <->  x  =  y ) )
87bibi2d 324 . . . . . 6  |-  ( z  =  y  ->  (
( ph  <->  x  =  z
)  <->  ( ph  <->  x  =  y ) ) )
98albidv 1778 . . . . 5  |-  ( z  =  y  ->  ( A. x ( ph  <->  x  =  z )  <->  A. x
( ph  <->  x  =  y
) ) )
109biimpac 493 . . . 4  |-  ( ( A. x ( ph  <->  x  =  z )  /\  z  =  y )  ->  A. x ( ph  <->  x  =  y ) )
1110exlimiv 1787 . . 3  |-  ( E. z ( A. x
( ph  <->  x  =  z
)  /\  z  =  y )  ->  A. x
( ph  <->  x  =  y
) )
126, 11syl6bir 237 . 2  |-  ( E! x ph  ->  (
( iota x ph )  =  y  ->  A. x
( ph  <->  x  =  y
) ) )
131, 12impbid2 209 1  |-  ( E! x ph  ->  ( A. x ( ph  <->  x  =  y )  <->  ( iota x ph )  =  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375   A.wal 1453    = wceq 1455   E.wex 1674    e. wcel 1898   E!weu 2310   _Vcvv 3057   [.wsbc 3279   iotacio 5567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-rex 2755  df-v 3059  df-sbc 3280  df-un 3421  df-sn 3981  df-pr 3983  df-uni 4213  df-iota 5569
This theorem is referenced by:  iotavalsb  36829
  Copyright terms: Public domain W3C validator