MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotaval Structured version   Unicode version

Theorem iotaval 5573
Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotaval  |-  ( A. x ( ph  <->  x  =  y )  ->  ( iota x ph )  =  y )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem iotaval
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dfiota2 5563 . 2  |-  ( iota
x ph )  =  U. { z  |  A. x ( ph  <->  x  =  z ) }
2 vex 3084 . . . . . . 7  |-  y  e. 
_V
3 sbeqalb 3352 . . . . . . . 8  |-  ( y  e.  _V  ->  (
( A. x (
ph 
<->  x  =  y )  /\  A. x (
ph 
<->  x  =  z ) )  ->  y  =  z ) )
4 equcomi 1843 . . . . . . . 8  |-  ( y  =  z  ->  z  =  y )
53, 4syl6 34 . . . . . . 7  |-  ( y  e.  _V  ->  (
( A. x (
ph 
<->  x  =  y )  /\  A. x (
ph 
<->  x  =  z ) )  ->  z  =  y ) )
62, 5ax-mp 5 . . . . . 6  |-  ( ( A. x ( ph  <->  x  =  y )  /\  A. x ( ph  <->  x  =  z ) )  -> 
z  =  y )
76ex 435 . . . . 5  |-  ( A. x ( ph  <->  x  =  y )  ->  ( A. x ( ph  <->  x  =  z )  ->  z  =  y ) )
8 equequ2 1849 . . . . . . . . . 10  |-  ( y  =  z  ->  (
x  =  y  <->  x  =  z ) )
98equcoms 1845 . . . . . . . . 9  |-  ( z  =  y  ->  (
x  =  y  <->  x  =  z ) )
109bibi2d 319 . . . . . . . 8  |-  ( z  =  y  ->  (
( ph  <->  x  =  y
)  <->  ( ph  <->  x  =  z ) ) )
1110biimpd 210 . . . . . . 7  |-  ( z  =  y  ->  (
( ph  <->  x  =  y
)  ->  ( ph  <->  x  =  z ) ) )
1211alimdv 1753 . . . . . 6  |-  ( z  =  y  ->  ( A. x ( ph  <->  x  =  y )  ->  A. x
( ph  <->  x  =  z
) ) )
1312com12 32 . . . . 5  |-  ( A. x ( ph  <->  x  =  y )  ->  (
z  =  y  ->  A. x ( ph  <->  x  =  z ) ) )
147, 13impbid 193 . . . 4  |-  ( A. x ( ph  <->  x  =  y )  ->  ( A. x ( ph  <->  x  =  z )  <->  z  =  y ) )
1514alrimiv 1763 . . 3  |-  ( A. x ( ph  <->  x  =  y )  ->  A. z
( A. x (
ph 
<->  x  =  z )  <-> 
z  =  y ) )
16 uniabio 5572 . . 3  |-  ( A. z ( A. x
( ph  <->  x  =  z
)  <->  z  =  y )  ->  U. { z  |  A. x (
ph 
<->  x  =  z ) }  =  y )
1715, 16syl 17 . 2  |-  ( A. x ( ph  <->  x  =  y )  ->  U. {
z  |  A. x
( ph  <->  x  =  z
) }  =  y )
181, 17syl5eq 2475 1  |-  ( A. x ( ph  <->  x  =  y )  ->  ( iota x ph )  =  y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370   A.wal 1435    = wceq 1437    e. wcel 1868   {cab 2407   _Vcvv 3081   U.cuni 4216   iotacio 5560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-rex 2781  df-v 3083  df-sbc 3300  df-un 3441  df-sn 3997  df-pr 3999  df-uni 4217  df-iota 5562
This theorem is referenced by:  iotauni  5574  iota1  5576  iotaex  5579  iota4  5580  iota5  5582  iota5f  30353  iotain  36626  iotaexeu  36627  iotasbc  36628  iotaequ  36638  iotavalb  36639  pm14.24  36641  sbiota1  36643
  Copyright terms: Public domain W3C validator