MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotaval Structured version   Unicode version

Theorem iotaval 5490
Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotaval  |-  ( A. x ( ph  <->  x  =  y )  ->  ( iota x ph )  =  y )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem iotaval
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dfiota2 5480 . 2  |-  ( iota
x ph )  =  U. { z  |  A. x ( ph  <->  x  =  z ) }
2 vex 3071 . . . . . . 7  |-  y  e. 
_V
3 sbeqalb 3341 . . . . . . . 8  |-  ( y  e.  _V  ->  (
( A. x (
ph 
<->  x  =  y )  /\  A. x (
ph 
<->  x  =  z ) )  ->  y  =  z ) )
4 equcomi 1733 . . . . . . . 8  |-  ( y  =  z  ->  z  =  y )
53, 4syl6 33 . . . . . . 7  |-  ( y  e.  _V  ->  (
( A. x (
ph 
<->  x  =  y )  /\  A. x (
ph 
<->  x  =  z ) )  ->  z  =  y ) )
62, 5ax-mp 5 . . . . . 6  |-  ( ( A. x ( ph  <->  x  =  y )  /\  A. x ( ph  <->  x  =  z ) )  -> 
z  =  y )
76ex 434 . . . . 5  |-  ( A. x ( ph  <->  x  =  y )  ->  ( A. x ( ph  <->  x  =  z )  ->  z  =  y ) )
8 equequ2 1739 . . . . . . . . . 10  |-  ( y  =  z  ->  (
x  =  y  <->  x  =  z ) )
98equcoms 1735 . . . . . . . . 9  |-  ( z  =  y  ->  (
x  =  y  <->  x  =  z ) )
109bibi2d 318 . . . . . . . 8  |-  ( z  =  y  ->  (
( ph  <->  x  =  y
)  <->  ( ph  <->  x  =  z ) ) )
1110biimpd 207 . . . . . . 7  |-  ( z  =  y  ->  (
( ph  <->  x  =  y
)  ->  ( ph  <->  x  =  z ) ) )
1211alimdv 1676 . . . . . 6  |-  ( z  =  y  ->  ( A. x ( ph  <->  x  =  y )  ->  A. x
( ph  <->  x  =  z
) ) )
1312com12 31 . . . . 5  |-  ( A. x ( ph  <->  x  =  y )  ->  (
z  =  y  ->  A. x ( ph  <->  x  =  z ) ) )
147, 13impbid 191 . . . 4  |-  ( A. x ( ph  <->  x  =  y )  ->  ( A. x ( ph  <->  x  =  z )  <->  z  =  y ) )
1514alrimiv 1686 . . 3  |-  ( A. x ( ph  <->  x  =  y )  ->  A. z
( A. x (
ph 
<->  x  =  z )  <-> 
z  =  y ) )
16 uniabio 5489 . . 3  |-  ( A. z ( A. x
( ph  <->  x  =  z
)  <->  z  =  y )  ->  U. { z  |  A. x (
ph 
<->  x  =  z ) }  =  y )
1715, 16syl 16 . 2  |-  ( A. x ( ph  <->  x  =  y )  ->  U. {
z  |  A. x
( ph  <->  x  =  z
) }  =  y )
181, 17syl5eq 2504 1  |-  ( A. x ( ph  <->  x  =  y )  ->  ( iota x ph )  =  y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1368    = wceq 1370    e. wcel 1758   {cab 2436   _Vcvv 3068   U.cuni 4189   iotacio 5477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-rex 2801  df-v 3070  df-sbc 3285  df-un 3431  df-sn 3976  df-pr 3978  df-uni 4190  df-iota 5479
This theorem is referenced by:  iotauni  5491  iota1  5493  iotaex  5496  iota4  5497  iota5  5499  iota5f  27515  iotain  29809  iotaexeu  29810  iotasbc  29811  iotaequ  29821  iotavalb  29822  pm14.24  29824  sbiota1  29826
  Copyright terms: Public domain W3C validator