MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotauni Structured version   Visualization version   Unicode version

Theorem iotauni 5565
Description: Equivalence between two different forms of  iota. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
iotauni  |-  ( E! x ph  ->  ( iota x ph )  = 
U. { x  | 
ph } )

Proof of Theorem iotauni
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-eu 2323 . 2  |-  ( E! x ph  <->  E. z A. x ( ph  <->  x  =  z ) )
2 iotaval 5564 . . . 4  |-  ( A. x ( ph  <->  x  =  z )  ->  ( iota x ph )  =  z )
3 uniabio 5563 . . . 4  |-  ( A. x ( ph  <->  x  =  z )  ->  U. {
x  |  ph }  =  z )
42, 3eqtr4d 2508 . . 3  |-  ( A. x ( ph  <->  x  =  z )  ->  ( iota x ph )  = 
U. { x  | 
ph } )
54exlimiv 1784 . 2  |-  ( E. z A. x (
ph 
<->  x  =  z )  ->  ( iota x ph )  =  U. { x  |  ph }
)
61, 5sylbi 200 1  |-  ( E! x ph  ->  ( iota x ph )  = 
U. { x  | 
ph } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189   A.wal 1450    = wceq 1452   E.wex 1671   E!weu 2319   {cab 2457   U.cuni 4190   iotacio 5551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-rex 2762  df-v 3033  df-sbc 3256  df-un 3395  df-sn 3960  df-pr 3962  df-uni 4191  df-iota 5553
This theorem is referenced by:  iotaint  5566  iotassuni  5569  dfiota4  5581  fveu  5871  riotauni  6276
  Copyright terms: Public domain W3C validator