Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotasbc5 Structured version   Unicode version

Theorem iotasbc5 31292
Description: Theorem *14.205 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotasbc5  |-  ( E! x ph  ->  ( [. ( iota x ph )  /  y ]. ps  <->  E. y ( y  =  ( iota x ph )  /\  ps ) ) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)

Proof of Theorem iotasbc5
StepHypRef Expression
1 sbc5 3338 . 2  |-  ( [. ( iota x ph )  /  y ]. ps  <->  E. y ( y  =  ( iota x ph )  /\  ps ) )
21a1i 11 1  |-  ( E! x ph  ->  ( [. ( iota x ph )  /  y ]. ps  <->  E. y ( y  =  ( iota x ph )  /\  ps ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383   E.wex 1599   E!weu 2268   [.wsbc 3313   iotacio 5539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-10 1823  ax-12 1840  ax-13 1985  ax-ext 2421
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-clab 2429  df-cleq 2435  df-clel 2438  df-v 3097  df-sbc 3314
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator