Mathbox for Andrew Salmon < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotasbc2 Structured version   Visualization version   Unicode version

Theorem iotasbc2 36841
 Description: Theorem *14.111 in [WhiteheadRussell] p. 184. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotasbc2
Distinct variable groups:   ,,   ,,   ,,
Allowed substitution hints:   ()   ()   (,,)

Proof of Theorem iotasbc2
StepHypRef Expression
1 iotasbc 36840 . 2
2 iotasbc 36840 . . . . 5
32anbi2d 718 . . . 4
4 3anass 1011 . . . . . 6
54exbii 1726 . . . . 5
6 19.42v 1842 . . . . 5
75, 6bitr2i 258 . . . 4
83, 7syl6bb 269 . . 3
98exbidv 1776 . 2
101, 9sylan9bb 714 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 189   wa 376   w3a 1007  wal 1450  wex 1671  weu 2319  wsbc 3255  cio 5551 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451 This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-rex 2762  df-v 3033  df-sbc 3256  df-un 3395  df-sn 3960  df-pr 3962  df-uni 4191  df-iota 5553 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator