Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotasbc Structured version   Visualization version   Unicode version

Theorem iotasbc 36840
Description: Definition *14.01 in [WhiteheadRussell] p. 184. In Principia Mathematica, Russell and Whitehead define  iota in terms of a function of  ( iota x ph ). Their definition differs in that a function of  ( iota x ph ) evaluates to "false" when there isn't a single  x that satisfies  ph. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotasbc  |-  ( E! x ph  ->  ( [. ( iota x ph )  /  y ]. ps  <->  E. y ( A. x
( ph  <->  x  =  y
)  /\  ps )
) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)

Proof of Theorem iotasbc
StepHypRef Expression
1 sbc5 3280 . 2  |-  ( [. ( iota x ph )  /  y ]. ps  <->  E. y ( y  =  ( iota x ph )  /\  ps ) )
2 iotaexeu 36839 . . . . . . 7  |-  ( E! x ph  ->  ( iota x ph )  e. 
_V )
3 eueq 3198 . . . . . . 7  |-  ( ( iota x ph )  e.  _V  <->  E! y  y  =  ( iota x ph ) )
42, 3sylib 201 . . . . . 6  |-  ( E! x ph  ->  E! y  y  =  ( iota x ph ) )
5 df-eu 2323 . . . . . . 7  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
6 iotaval 5564 . . . . . . . . . 10  |-  ( A. x ( ph  <->  x  =  y )  ->  ( iota x ph )  =  y )
76eqcomd 2477 . . . . . . . . 9  |-  ( A. x ( ph  <->  x  =  y )  ->  y  =  ( iota x ph ) )
87ancri 561 . . . . . . . 8  |-  ( A. x ( ph  <->  x  =  y )  ->  (
y  =  ( iota
x ph )  /\  A. x ( ph  <->  x  =  y ) ) )
98eximi 1715 . . . . . . 7  |-  ( E. y A. x (
ph 
<->  x  =  y )  ->  E. y ( y  =  ( iota x ph )  /\  A. x
( ph  <->  x  =  y
) ) )
105, 9sylbi 200 . . . . . 6  |-  ( E! x ph  ->  E. y
( y  =  ( iota x ph )  /\  A. x ( ph  <->  x  =  y ) ) )
11 eupick 2385 . . . . . 6  |-  ( ( E! y  y  =  ( iota x ph )  /\  E. y ( y  =  ( iota
x ph )  /\  A. x ( ph  <->  x  =  y ) ) )  ->  ( y  =  ( iota x ph )  ->  A. x ( ph  <->  x  =  y ) ) )
124, 10, 11syl2anc 673 . . . . 5  |-  ( E! x ph  ->  (
y  =  ( iota
x ph )  ->  A. x
( ph  <->  x  =  y
) ) )
1312, 7impbid1 208 . . . 4  |-  ( E! x ph  ->  (
y  =  ( iota
x ph )  <->  A. x
( ph  <->  x  =  y
) ) )
1413anbi1d 719 . . 3  |-  ( E! x ph  ->  (
( y  =  ( iota x ph )  /\  ps )  <->  ( A. x ( ph  <->  x  =  y )  /\  ps ) ) )
1514exbidv 1776 . 2  |-  ( E! x ph  ->  ( E. y ( y  =  ( iota x ph )  /\  ps )  <->  E. y
( A. x (
ph 
<->  x  =  y )  /\  ps ) ) )
161, 15syl5bb 265 1  |-  ( E! x ph  ->  ( [. ( iota x ph )  /  y ]. ps  <->  E. y ( A. x
( ph  <->  x  =  y
)  /\  ps )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376   A.wal 1450    = wceq 1452   E.wex 1671    e. wcel 1904   E!weu 2319   _Vcvv 3031   [.wsbc 3255   iotacio 5551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-rex 2762  df-v 3033  df-sbc 3256  df-un 3395  df-sn 3960  df-pr 3962  df-uni 4191  df-iota 5553
This theorem is referenced by:  iotasbc2  36841  iotavalb  36851  fvsb  36875
  Copyright terms: Public domain W3C validator