Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotasbc Structured version   Unicode version

Theorem iotasbc 36683
Description: Definition *14.01 in [WhiteheadRussell] p. 184. In Principia Mathematica, Russell and Whitehead define  iota in terms of a function of  ( iota x ph ). Their definition differs in that a function of  ( iota x ph ) evaluates to "false" when there isn't a single  x that satisfies  ph. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotasbc  |-  ( E! x ph  ->  ( [. ( iota x ph )  /  y ]. ps  <->  E. y ( A. x
( ph  <->  x  =  y
)  /\  ps )
) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)

Proof of Theorem iotasbc
StepHypRef Expression
1 sbc5 3267 . 2  |-  ( [. ( iota x ph )  /  y ]. ps  <->  E. y ( y  =  ( iota x ph )  /\  ps ) )
2 iotaexeu 36682 . . . . . . 7  |-  ( E! x ph  ->  ( iota x ph )  e. 
_V )
3 eueq 3185 . . . . . . 7  |-  ( ( iota x ph )  e.  _V  <->  E! y  y  =  ( iota x ph ) )
42, 3sylib 199 . . . . . 6  |-  ( E! x ph  ->  E! y  y  =  ( iota x ph ) )
5 df-eu 2280 . . . . . . 7  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
6 iotaval 5519 . . . . . . . . . 10  |-  ( A. x ( ph  <->  x  =  y )  ->  ( iota x ph )  =  y )
76eqcomd 2434 . . . . . . . . 9  |-  ( A. x ( ph  <->  x  =  y )  ->  y  =  ( iota x ph ) )
87ancri 554 . . . . . . . 8  |-  ( A. x ( ph  <->  x  =  y )  ->  (
y  =  ( iota
x ph )  /\  A. x ( ph  <->  x  =  y ) ) )
98eximi 1701 . . . . . . 7  |-  ( E. y A. x (
ph 
<->  x  =  y )  ->  E. y ( y  =  ( iota x ph )  /\  A. x
( ph  <->  x  =  y
) ) )
105, 9sylbi 198 . . . . . 6  |-  ( E! x ph  ->  E. y
( y  =  ( iota x ph )  /\  A. x ( ph  <->  x  =  y ) ) )
11 eupick 2342 . . . . . 6  |-  ( ( E! y  y  =  ( iota x ph )  /\  E. y ( y  =  ( iota
x ph )  /\  A. x ( ph  <->  x  =  y ) ) )  ->  ( y  =  ( iota x ph )  ->  A. x ( ph  <->  x  =  y ) ) )
124, 10, 11syl2anc 665 . . . . 5  |-  ( E! x ph  ->  (
y  =  ( iota
x ph )  ->  A. x
( ph  <->  x  =  y
) ) )
1312, 7impbid1 206 . . . 4  |-  ( E! x ph  ->  (
y  =  ( iota
x ph )  <->  A. x
( ph  <->  x  =  y
) ) )
1413anbi1d 709 . . 3  |-  ( E! x ph  ->  (
( y  =  ( iota x ph )  /\  ps )  <->  ( A. x ( ph  <->  x  =  y )  /\  ps ) ) )
1514exbidv 1762 . 2  |-  ( E! x ph  ->  ( E. y ( y  =  ( iota x ph )  /\  ps )  <->  E. y
( A. x (
ph 
<->  x  =  y )  /\  ps ) ) )
161, 15syl5bb 260 1  |-  ( E! x ph  ->  ( [. ( iota x ph )  /  y ]. ps  <->  E. y ( A. x
( ph  <->  x  =  y
)  /\  ps )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370   A.wal 1435    = wceq 1437   E.wex 1657    e. wcel 1872   E!weu 2276   _Vcvv 3022   [.wsbc 3242   iotacio 5506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-rex 2720  df-v 3024  df-sbc 3243  df-un 3384  df-sn 3942  df-pr 3944  df-uni 4163  df-iota 5508
This theorem is referenced by:  iotasbc2  36684  iotavalb  36694  fvsb  36718
  Copyright terms: Public domain W3C validator