MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotanul Structured version   Unicode version

Theorem iotanul 5580
Description: Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one  x that satisfies  ph. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotanul  |-  ( -.  E! x ph  ->  ( iota x ph )  =  (/) )

Proof of Theorem iotanul
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-eu 2270 . 2  |-  ( E! x ph  <->  E. z A. x ( ph  <->  x  =  z ) )
2 dfiota2 5566 . . 3  |-  ( iota
x ph )  =  U. { z  |  A. x ( ph  <->  x  =  z ) }
3 alnex 1661 . . . . . 6  |-  ( A. z  -.  A. x (
ph 
<->  x  =  z )  <->  -.  E. z A. x
( ph  <->  x  =  z
) )
4 ax-1 6 . . . . . . . . . . 11  |-  ( -. 
A. x ( ph  <->  x  =  z )  -> 
( z  =  z  ->  -.  A. x
( ph  <->  x  =  z
) ) )
5 eqidd 2430 . . . . . . . . . . 11  |-  ( -. 
A. x ( ph  <->  x  =  z )  -> 
z  =  z )
64, 5impbid1 206 . . . . . . . . . 10  |-  ( -. 
A. x ( ph  <->  x  =  z )  -> 
( z  =  z  <->  -.  A. x ( ph  <->  x  =  z ) ) )
76con2bid 330 . . . . . . . . 9  |-  ( -. 
A. x ( ph  <->  x  =  z )  -> 
( A. x (
ph 
<->  x  =  z )  <->  -.  z  =  z
) )
87alimi 1680 . . . . . . . 8  |-  ( A. z  -.  A. x (
ph 
<->  x  =  z )  ->  A. z ( A. x ( ph  <->  x  =  z )  <->  -.  z  =  z ) )
9 abbi 2560 . . . . . . . 8  |-  ( A. z ( A. x
( ph  <->  x  =  z
)  <->  -.  z  =  z )  <->  { z  |  A. x ( ph  <->  x  =  z ) }  =  { z  |  -.  z  =  z } )
108, 9sylib 199 . . . . . . 7  |-  ( A. z  -.  A. x (
ph 
<->  x  =  z )  ->  { z  | 
A. x ( ph  <->  x  =  z ) }  =  { z  |  -.  z  =  z } )
11 dfnul2 3769 . . . . . . 7  |-  (/)  =  {
z  |  -.  z  =  z }
1210, 11syl6eqr 2488 . . . . . 6  |-  ( A. z  -.  A. x (
ph 
<->  x  =  z )  ->  { z  | 
A. x ( ph  <->  x  =  z ) }  =  (/) )
133, 12sylbir 216 . . . . 5  |-  ( -. 
E. z A. x
( ph  <->  x  =  z
)  ->  { z  |  A. x ( ph  <->  x  =  z ) }  =  (/) )
1413unieqd 4232 . . . 4  |-  ( -. 
E. z A. x
( ph  <->  x  =  z
)  ->  U. { z  |  A. x (
ph 
<->  x  =  z ) }  =  U. (/) )
15 uni0 4249 . . . 4  |-  U. (/)  =  (/)
1614, 15syl6eq 2486 . . 3  |-  ( -. 
E. z A. x
( ph  <->  x  =  z
)  ->  U. { z  |  A. x (
ph 
<->  x  =  z ) }  =  (/) )
172, 16syl5eq 2482 . 2  |-  ( -. 
E. z A. x
( ph  <->  x  =  z
)  ->  ( iota x ph )  =  (/) )
181, 17sylnbi 307 1  |-  ( -.  E! x ph  ->  ( iota x ph )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187   A.wal 1435    = wceq 1437   E.wex 1659   E!weu 2266   {cab 2414   (/)c0 3767   U.cuni 4222   iotacio 5563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-v 3089  df-dif 3445  df-in 3449  df-ss 3456  df-nul 3768  df-sn 4003  df-uni 4223  df-iota 5565
This theorem is referenced by:  iotassuni  5581  iotaex  5582  dfiota4  5593  csbiota  5594  tz6.12-2  5872  dffv3  5877  csbriota  6279  riotaund  6302  isf32lem9  8789  grpidval  16454  0g0  16457
  Copyright terms: Public domain W3C validator