Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotaequ Structured version   Unicode version

Theorem iotaequ 36750
Description: Theorem *14.2 in [WhiteheadRussell] p. 189. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotaequ  |-  ( iota
x x  =  y )  =  y
Distinct variable group:    x, y

Proof of Theorem iotaequ
StepHypRef Expression
1 iotaval 5576 . 2  |-  ( A. x ( x  =  y  <->  x  =  y
)  ->  ( iota x x  =  y
)  =  y )
2 biid 239 . 2  |-  ( x  =  y  <->  x  =  y )
31, 2mpg 1665 1  |-  ( iota
x x  =  y )  =  y
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    = wceq 1437   iotacio 5563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-rex 2777  df-v 3082  df-sbc 3300  df-un 3441  df-sn 3999  df-pr 4001  df-uni 4220  df-iota 5565
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator