MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotaeq Structured version   Unicode version

Theorem iotaeq 5382
Description: Equality theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.)
Assertion
Ref Expression
iotaeq  |-  ( A. x  x  =  y  ->  ( iota x ph )  =  ( iota y ph ) )

Proof of Theorem iotaeq
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 drsb1 2068 . . . . . . 7  |-  ( A. x  x  =  y  ->  ( [ z  /  x ] ph  <->  [ z  /  y ] ph ) )
2 df-clab 2424 . . . . . . 7  |-  ( z  e.  { x  | 
ph }  <->  [ z  /  x ] ph )
3 df-clab 2424 . . . . . . 7  |-  ( z  e.  { y  | 
ph }  <->  [ z  /  y ] ph )
41, 2, 33bitr4g 288 . . . . . 6  |-  ( A. x  x  =  y  ->  ( z  e.  {
x  |  ph }  <->  z  e.  { y  | 
ph } ) )
54eqrdv 2435 . . . . 5  |-  ( A. x  x  =  y  ->  { x  |  ph }  =  { y  |  ph } )
65eqeq1d 2445 . . . 4  |-  ( A. x  x  =  y  ->  ( { x  | 
ph }  =  {
z }  <->  { y  |  ph }  =  {
z } ) )
76abbidv 2551 . . 3  |-  ( A. x  x  =  y  ->  { z  |  {
x  |  ph }  =  { z } }  =  { z  |  {
y  |  ph }  =  { z } }
)
87unieqd 4094 . 2  |-  ( A. x  x  =  y  ->  U. { z  |  { x  |  ph }  =  { z } }  =  U. { z  |  {
y  |  ph }  =  { z } }
)
9 df-iota 5374 . 2  |-  ( iota
x ph )  =  U. { z  |  {
x  |  ph }  =  { z } }
10 df-iota 5374 . 2  |-  ( iota y ph )  = 
U. { z  |  { y  |  ph }  =  { z } }
118, 9, 103eqtr4g 2494 1  |-  ( A. x  x  =  y  ->  ( iota x ph )  =  ( iota y ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1367    = wceq 1369   [wsb 1700    e. wcel 1756   {cab 2423   {csn 3870   U.cuni 4084   iotacio 5372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2418
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-rex 2715  df-uni 4085  df-iota 5374
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator