MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iota5 Structured version   Unicode version

Theorem iota5 5569
Description: A method for computing iota. (Contributed by NM, 17-Sep-2013.)
Hypothesis
Ref Expression
iota5.1  |-  ( (
ph  /\  A  e.  V )  ->  ( ps 
<->  x  =  A ) )
Assertion
Ref Expression
iota5  |-  ( (
ph  /\  A  e.  V )  ->  ( iota x ps )  =  A )
Distinct variable groups:    x, A    x, V    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem iota5
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iota5.1 . . 3  |-  ( (
ph  /\  A  e.  V )  ->  ( ps 
<->  x  =  A ) )
21alrimiv 1695 . 2  |-  ( (
ph  /\  A  e.  V )  ->  A. x
( ps  <->  x  =  A ) )
3 eqeq2 2482 . . . . . . 7  |-  ( y  =  A  ->  (
x  =  y  <->  x  =  A ) )
43bibi2d 318 . . . . . 6  |-  ( y  =  A  ->  (
( ps  <->  x  =  y )  <->  ( ps  <->  x  =  A ) ) )
54albidv 1689 . . . . 5  |-  ( y  =  A  ->  ( A. x ( ps  <->  x  =  y )  <->  A. x
( ps  <->  x  =  A ) ) )
6 eqeq2 2482 . . . . 5  |-  ( y  =  A  ->  (
( iota x ps )  =  y  <->  ( iota x ps )  =  A
) )
75, 6imbi12d 320 . . . 4  |-  ( y  =  A  ->  (
( A. x ( ps  <->  x  =  y
)  ->  ( iota x ps )  =  y )  <->  ( A. x
( ps  <->  x  =  A )  ->  ( iota x ps )  =  A ) ) )
8 iotaval 5560 . . . 4  |-  ( A. x ( ps  <->  x  =  y )  ->  ( iota x ps )  =  y )
97, 8vtoclg 3171 . . 3  |-  ( A  e.  V  ->  ( A. x ( ps  <->  x  =  A )  ->  ( iota x ps )  =  A ) )
109adantl 466 . 2  |-  ( (
ph  /\  A  e.  V )  ->  ( A. x ( ps  <->  x  =  A )  ->  ( iota x ps )  =  A ) )
112, 10mpd 15 1  |-  ( (
ph  /\  A  e.  V )  ->  ( iota x ps )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1377    = wceq 1379    e. wcel 1767   iotacio 5547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-rex 2820  df-v 3115  df-sbc 3332  df-un 3481  df-sn 4028  df-pr 4030  df-uni 4246  df-iota 5549
This theorem is referenced by:  isf32lem9  8737  rlimdm  13333  fsum  13501  gsumval2a  15825  dchrptlem1  23267  lgsdchrval  23350  fprod  28650  rlimdmafv  31729
  Copyright terms: Public domain W3C validator